IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v32y4i2020p895-911.html
   My bibliography  Save this article

Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening

Author

Listed:
  • Hrayer Aprahamian

    (Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas 77843;)

  • Douglas R. Bish

    (Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061)

  • Ebru K. Bish

    (Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061)

Abstract

We provide a novel regret-based robust formulation of the Dorfman group size problem considering the realistic setting where the prevalence rate is uncertain, establish key structural properties of the optimal solution, and provide an exact algorithm. Our analysis also leads to exact closed-form expressions for the optimal Dorfman group size under a deterministic prevalence rate, which is the problem studied in the extant literature. Thus, our structural results not only unify existing, and mostly empirical, results on the Dorfman group size problem under a deterministic prevalence rate, but, more importantly, enable us to efficiently solve the robust version of this problem to optimality. We demonstrate the value of robust testing schemes with a case study on disease screening using realistic data. Our case study indicates that robust testing schemes can significantly outperform their deterministic counterparts, by not only substantially reducing the maximum regret value, but, in the majority of the cases, reducing testing costs as well. Our findings have important implications on public health screening practices.

Suggested Citation

  • Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
  • Handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:895-911
    DOI: 10.1287/ijoc.2019.0942
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2019.0942
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2019.0942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lawrence M. Wein & Stefanos A. Zenios, 1996. "Pooled Testing for HIV Screening: Capturing the Dilution Effect," Operations Research, INFORMS, vol. 44(4), pages 543-569, August.
    2. Georgia Perakis & Guillaume Roels, 2008. "Regret in the Newsvendor Model with Partial Information," Operations Research, INFORMS, vol. 56(1), pages 188-203, February.
    3. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    4. Michael S. Black & Christopher R. Bilder & Joshua M. Tebbs, 2012. "Group testing in heterogeneous populations by using halving algorithms," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(2), pages 277-290, March.
    5. Brett Saraniti, 2006. "Optimal pooled testing," Health Care Management Science, Springer, vol. 9(2), pages 143-149, May.
    6. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    7. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    8. Caroline T Korves & Sue J Goldie & Megan B Murray, 2006. "Cost-Effectiveness of Alternative Blood-Screening Strategies for West Nile Virus in the United States," PLOS Medicine, Public Library of Science, vol. 3(2), pages 1-1, January.
    9. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Informative Dorfman Screening," Biometrics, The International Biometric Society, vol. 68(1), pages 287-296, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayi Lin & Hrayer Aprahamian & George Golovko, 2024. "An optimization framework for large-scale screening under limited testing capacity with application to COVID-19," Health Care Management Science, Springer, vol. 27(2), pages 223-238, June.
    2. Hrayer Aprahamian & Vedat Verter & Manaf Zargoush, 2024. "Editorial: management science for pandemic prevention, preparedness, and response," Health Care Management Science, Springer, vol. 27(3), pages 479-482, September.
    3. Hussein El Hajj & Douglas R. Bish & Ebru K. Bish & Denise M. Kay, 2022. "Novel Pooling Strategies for Genetic Testing, with Application to Newborn Screening," Management Science, INFORMS, vol. 68(11), pages 7994-8014, November.
    4. Ramy Elitzur & Dmitry Krass & Eyal Zimlichman, 2023. "Machine learning for optimal test admission in the presence of resource constraints," Health Care Management Science, Springer, vol. 26(2), pages 279-300, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    2. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.
    3. Hrayer Aprahamian & Hadi El-Amine, 2022. "Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 150-164, January.
    4. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    5. Gustavo Quinderé Saraiva, 2023. "Pool testing with dilution effects and heterogeneous priors," Health Care Management Science, Springer, vol. 26(4), pages 651-672, December.
    6. Hadi El-Amine & Ebru K. Bish & Douglas R. Bish, 2018. "Robust Postdonation Blood Screening Under Prevalence Rate Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 1-17, 1-2.
    7. Hussein El Hajj & Douglas R. Bish & Ebru K. Bish & Denise M. Kay, 2022. "Novel Pooling Strategies for Genetic Testing, with Application to Newborn Screening," Management Science, INFORMS, vol. 68(11), pages 7994-8014, November.
    8. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    9. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    10. Christopher R. Bilder & Joshua M. Tebbs & Christopher S. McMahan, 2019. "Informative group testing for multiplex assays," Biometrics, The International Biometric Society, vol. 75(1), pages 278-288, March.
    11. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    12. Lin, Jun & Ng, Tsan Sheng, 2011. "Robust multi-market newsvendor models with interval demand data," European Journal of Operational Research, Elsevier, vol. 212(2), pages 361-373, July.
    13. Georgia Perakis & Melvyn Sim & Qinshen Tang & Peng Xiong, 2023. "Robust Pricing and Production with Information Partitioning and Adaptation," Management Science, INFORMS, vol. 69(3), pages 1398-1419, March.
    14. David Hong & Rounak Dey & Xihong Lin & Brian Cleary & Edgar Dobriban, 2022. "Group testing via hypergraph factorization applied to COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.
    16. Peijie Hou & Joshua M. Tebbs & Christopher R. Bilder & Christopher S. McMahan, 2017. "Hierarchical group testing for multiple infections," Biometrics, The International Biometric Society, vol. 73(2), pages 656-665, June.
    17. Chase N. Joyner & Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2020. "From mixed effects modeling to spike and slab variable selection: A Bayesian regression model for group testing data," Biometrics, The International Biometric Society, vol. 76(3), pages 913-923, September.
    18. Qiu, Ruozhen & Shang, Jennifer & Huang, Xiaoyuan, 2014. "Robust inventory decision under distribution uncertainty: A CVaR-based optimization approach," International Journal of Production Economics, Elsevier, vol. 153(C), pages 13-23.
    19. Xie, Chen & Wang, Liangquan & Yang, Chaolin, 2021. "Robust inventory management with multiple supply sources," European Journal of Operational Research, Elsevier, vol. 295(2), pages 463-474.
    20. Nguyen, Ngoc T. & Bish, Ebru K. & Bish, Douglas R., 2021. "Optimal pooled testing design for prevalence estimation under resource constraints," Omega, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:32:y:4:i:2020:p:895-911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.