IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p497-d741808.html
   My bibliography  Save this article

Group Testing with Consideration of the Dilution Effect

Author

Listed:
  • Haoran Jiang

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA)

  • Hongshik Ahn

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA)

  • Xiaolin Li

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600, USA)

Abstract

We propose a method of group testing by taking dilution effects into consideration. We estimate the dilution effect based on massively collected RT-PCR threshold cycle data and incorporate them into optimizing group tests. The new constraint helps find a robust solution of a nonlinear equation. The proposed framework has the flexibility to incorporate geographic and demographic information. We conduct a Monte Carlo simulation to compare different group testing approaches under the estimated dilution effect. This study suggests that increased group size adversely impacts the false negative rate significantly when the infection rate is relatively low. Group tests with optimal pool sizes improve the sensitivity over group tests with a fixed pool size. Based on our simulation study, we recommend single group testing with optimal group sizes.

Suggested Citation

  • Haoran Jiang & Hongshik Ahn & Xiaolin Li, 2022. "Group Testing with Consideration of the Dilution Effect," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:497-:d:741808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hae-Young Kim & Michael G. Hudgens, 2009. "Three-Dimensional Array-Based Group Testing Algorithms," Biometrics, The International Biometric Society, vol. 65(3), pages 903-910, September.
    2. Karyn Heavner & Craig Newschaffer & Irva Hertz-Picciotto & Deborah Bennett & Igor Burstyn, 2015. "Pooling Bio-Specimens in the Presence of Measurement Error and Non-Linearity in Dose-Response: Simulation Study in the Context of a Birth Cohort Investigating Risk Factors for Autism Spectrum Disorder," IJERPH, MDPI, vol. 12(11), pages 1-20, November.
    3. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2020. "Optimal Group Testing: Structural Properties and Robust Solutions, with Application to Public Health Screening," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 895-911, October.
    4. Hrayer Aprahamian & Hadi El-Amine, 2022. "Optimal Screening of Populations with Heterogeneous Risk Profiles Under the Availability of Multiple Tests," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 150-164, January.
    5. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    6. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    7. Hussein El Hajj & Douglas R. Bish & Ebru K. Bish & Denise M. Kay, 2022. "Novel Pooling Strategies for Genetic Testing, with Application to Newborn Screening," Management Science, INFORMS, vol. 68(11), pages 7994-8014, November.
    8. Peng Chen & Joshua M. Tebbs & Christopher R. Bilder, 2009. "Group Testing Regression Models with Fixed and Random Effects," Biometrics, The International Biometric Society, vol. 65(4), pages 1270-1278, December.
    9. Xinlei Zuo & Juan Ding & Junjian Zhang & Wenjun Xiong, 2024. "Nonparametric Additive Regression for High-Dimensional Group Testing Data," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
    10. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    11. Samuel D. Lendle & Michael G. Hudgens & Bahjat F. Qaqish, 2012. "Group Testing for Case Identification with Correlated Responses," Biometrics, The International Biometric Society, vol. 68(2), pages 532-540, June.
    12. David Hong & Rounak Dey & Xihong Lin & Brian Cleary & Edgar Dobriban, 2022. "Group testing via hypergraph factorization applied to COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    14. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Informative Dorfman Screening," Biometrics, The International Biometric Society, vol. 68(1), pages 287-296, March.
    15. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    16. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.
    17. Gustavo Quinderé Saraiva, 2023. "Pool testing with dilution effects and heterogeneous priors," Health Care Management Science, Springer, vol. 26(4), pages 651-672, December.
    18. Juan Ding & Wenjun Xiong, 2015. "Robust group testing for multiple traits with misclassification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2115-2125, October.
    19. Peijie Hou & Joshua M. Tebbs & Christopher R. Bilder & Christopher S. McMahan, 2017. "Hierarchical group testing for multiple infections," Biometrics, The International Biometric Society, vol. 73(2), pages 656-665, June.
    20. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:497-:d:741808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.