IDEAS home Printed from https://ideas.repec.org/a/taf/amstat/v69y2015i1p45-52.html
   My bibliography  Save this article

A Note on the Minimax Solution for the Two-Stage Group Testing Problem

Author

Listed:
  • Yaakov Malinovsky
  • Paul S. Albert

Abstract

Group testing is an active area of current research and has important applications in medicine, biotechnology, genetics, and product testing. There have been recent advances in design and estimation, but the simple Dorfman procedure introduced by R. Dorfman in 1943 is widely used in practice. In many practical situations, the exact value of the probability p of being affected is unknown. We present both minimax and Bayesian solutions for the group size problem when p is unknown. For unbounded p , we show that the minimax solution for group size is 8, while using a Bayesian strategy with Jeffreys' prior results in a group size of 13. We also present solutions when p is bounded from above. For the practitioner, we propose strong justification for using a group size of between 8 and 13 when a constraint on p is not incorporated and provide useable code for computing the minimax group size under a constrained p .

Suggested Citation

  • Yaakov Malinovsky & Paul S. Albert, 2015. "A Note on the Minimax Solution for the Two-Stage Group Testing Problem," The American Statistician, Taylor & Francis Journals, vol. 69(1), pages 45-52, February.
  • Handle: RePEc:taf:amstat:v:69:y:2015:i:1:p:45-52
    DOI: 10.1080/00031305.2014.983545
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00031305.2014.983545
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00031305.2014.983545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.
    2. James O. Berger & Jose M. Bernardo & Dongchu Sun, 2012. "Objective Priors for Discrete Parameter Spaces," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 636-648, June.
    3. H. M. Finucan, 1964. "The Blood Testing Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 13(1), pages 43-50, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    2. Chang Xu & Dongchu Sun & Chong He, 2014. "Objective Bayesian analysis for a capture–recapture model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 245-278, April.
    3. Crane, Harry, 2017. "A hidden Markov model for latent temporal clustering with application to ideological alignment in the U.S. Supreme Court," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 19-36.
    4. Christopher R. Bilder & Joshua M. Tebbs & Christopher S. McMahan, 2019. "Informative group testing for multiplex assays," Biometrics, The International Biometric Society, vol. 75(1), pages 278-288, March.
    5. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    6. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    7. Nguyen, Ngoc T. & Bish, Ebru K. & Bish, Douglas R., 2021. "Optimal pooled testing design for prevalence estimation under resource constraints," Omega, Elsevier, vol. 105(C).
    8. Hinoveanu, Laurentiu C. & Leisen, Fabrizio & Villa, Cristiano, 2019. "Bayesian loss-based approach to change point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 129(C), pages 61-78.
    9. Shaul K. Bar‐Lev & Arnon Boneh & David Perry, 1990. "Incomplete identification models for group‐testable items," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(5), pages 647-659, October.
    10. Hrayer Aprahamian & Douglas R. Bish & Ebru K. Bish, 2019. "Optimal Risk-Based Group Testing," Management Science, INFORMS, vol. 65(9), pages 4365-4384, September.
    11. Graham Hepworth & Brad J. Biggerstaff, 2021. "Bias Correction in Estimating Proportions by Imperfect Pooled Testing," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 90-104, March.
    12. David Hong & Rounak Dey & Xihong Lin & Brian Cleary & Edgar Dobriban, 2022. "Group testing via hypergraph factorization applied to COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Wang, Dewei & McMahan, Christopher S. & Tebbs, Joshua M. & Bilder, Christopher R., 2018. "Group testing case identification with biomarker information," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 156-166.
    14. Juan Ding & Wenjun Xiong, 2015. "Robust group testing for multiple traits with misclassification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2115-2125, October.
    15. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.
    16. Chase N. Joyner & Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2020. "From mixed effects modeling to spike and slab variable selection: A Bayesian regression model for group testing data," Biometrics, The International Biometric Society, vol. 76(3), pages 913-923, September.
    17. Gregory Haber & Yaakov Malinovsky, 2020. "On the Construction of Unbiased Estimators for the Group Testing Problem," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 220-241, February.
    18. Wei Zhang & Aiyi Liu & Qizhai Li & Paul S. Albert, 2020. "Nonparametric estimation of distributions and diagnostic accuracy based on group‐tested results with differential misclassification," Biometrics, The International Biometric Society, vol. 76(4), pages 1147-1156, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:amstat:v:69:y:2015:i:1:p:45-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UTAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.