IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v61y2005i4p1093-1101.html
   My bibliography  Save this article

Improving Removal-Based Estimates of Abundance by Sampling a Population of Spatially Distinct Subpopulations

Author

Listed:
  • Robert M. Dorazio
  • Howard L. Jelks
  • Frank Jordan

Abstract

No abstract is available for this item.

Suggested Citation

  • Robert M. Dorazio & Howard L. Jelks & Frank Jordan, 2005. "Improving Removal-Based Estimates of Abundance by Sampling a Population of Spatially Distinct Subpopulations," Biometrics, The International Biometric Society, vol. 61(4), pages 1093-1101, December.
  • Handle: RePEc:bla:biomet:v:61:y:2005:i:4:p:1093-1101
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2005.00360.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Canale & Igor Prünster, 2017. "Robustifying Bayesian nonparametric mixtures for count data," Biometrics, The International Biometric Society, vol. 73(1), pages 174-184, March.
    2. Robert M. Dorazio & Bhramar Mukherjee & Li Zhang & Malay Ghosh & Howard L. Jelks & Frank Jordan, 2008. "Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior," Biometrics, The International Biometric Society, vol. 64(2), pages 635-644, June.
    3. Brun, Mélanie & Abraham, Christophe & Jarry, Marc & Dumas, Jacques & Lange, Frédéric & Prévost, Etienne, 2011. "Estimating an homogeneous series of a population abundance indicator despite changes in data collection procedure: A hierarchical Bayesian modelling approach," Ecological Modelling, Elsevier, vol. 222(5), pages 1069-1079.
    4. William A. Link & Sarah J. Converse & Amy A. Yackel Adams & Nathan J. Hostetter, 2018. "Analysis of Population Change and Movement Using Robust Design Removal Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 463-477, December.
    5. Linda M. Haines, 2020. "Multinomial N‐mixture models for removal sampling," Biometrics, The International Biometric Society, vol. 76(2), pages 540-548, June.
    6. Tenan, S. & Maffioletti, C. & Caccianiga, M. & Compostella, C. & Seppi, R. & Gobbi, M., 2016. "Hierarchical models for describing space-for-time variations in insect population size and sex-ratio along a primary succession," Ecological Modelling, Elsevier, vol. 329(C), pages 18-28.
    7. repec:jss:jstsof:43:i10 is not listed on IDEAS
    8. Ming Zhou & Rachel S. McCrea & Eleni Matechou & Diana J. Cole & Richard A. Griffiths, 2019. "Removal models accounting for temporary emigration," Biometrics, The International Biometric Society, vol. 75(1), pages 24-35, March.
    9. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2017. "Assessing the Impacts of Time-to-Detection Distribution Assumptions on Detection Probability Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 465-480, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steen, Valerie A. & Duarte, Adam & Peterson, James T., 2023. "An evaluation of multistate occupancy models for estimating relative abundance and population trends," Ecological Modelling, Elsevier, vol. 478(C).
    2. Mevin B. Hooten & Christopher K. Wikle & Robert M. Dorazio & J. Andrew Royle, 2007. "Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions," Biometrics, The International Biometric Society, vol. 63(2), pages 558-567, June.
    3. Yinqiu Ji & Christopher C. M. Baker & Viorel D. Popescu & Jiaxin Wang & Chunying Wu & Zhengyang Wang & Yuanheng Li & Lin Wang & Chaolang Hua & Zhongxing Yang & Chunyan Yang & Charles C. Y. Xu & Alex D, 2022. "Measuring protected-area effectiveness using vertebrate distributions from leech iDNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    5. Perry J. Williams & Cody Schroeder & Pat Jackson, 2020. "Estimating Reproduction and Survival of Unmarked Juveniles Using Aerial Images and Marked Adults," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 133-147, June.
    6. Henry T. Reich, 2020. "Optimal sampling design and the accuracy of occupancy models," Biometrics, The International Biometric Society, vol. 76(3), pages 1017-1027, September.
    7. Wen‐Han Hwang & Richard Huggins & Jakub Stoklosa, 2022. "A model for analyzing clustered occurrence data," Biometrics, The International Biometric Society, vol. 78(2), pages 598-611, June.
    8. Jami E MacNeil & Rod N Williams, 2014. "Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    9. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
    10. Eve Bohnett & Jessica Schulz & Robert Dobbs & Thomas Hoctor & Dave Hulse & Bilal Ahmad & Wajid Rashid & Hardin Waddle, 2023. "Shorebird Monitoring Using Spatially Explicit Occupancy and Abundance," Land, MDPI, vol. 12(4), pages 1-15, April.
    11. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2021. "Joint Modeling of Distances and Times in Point-Count Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 289-305, June.
    12. Brock M Huntsman & Jeffrey A Falke & James W Savereide & Katrina E Bennett, 2017. "The role of density-dependent and –independent processes in spawning habitat selection by salmon in an Arctic riverscape," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-21, May.
    13. Verniest, Fabien & Greulich, Sabine, 2019. "Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review," Ecological Modelling, Elsevier, vol. 414(C).
    14. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2013. "Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 263(C), pages 244-250.
    15. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    16. D. Dail & L. Madsen, 2011. "Models for Estimating Abundance from Repeated Counts of an Open Metapopulation," Biometrics, The International Biometric Society, vol. 67(2), pages 577-587, June.
    17. Whitlock, Steven L. & Womble, Jamie N. & Peterson, James T., 2020. "Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings," Ecological Modelling, Elsevier, vol. 420(C).
    18. Xiaoli Fan & Miguel I. Gómez & Shady S. Atallah & Jon M. Conrad, 2020. "A Bayesian State‐Space Approach for Invasive Species Management: The Case of Spotted Wing Drosophila," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1227-1244, August.
    19. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    20. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2017. "Reprint of: Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 359(C), pages 461-467.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:61:y:2005:i:4:p:1093-1101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.