IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i2p1507-1519.html
   My bibliography  Save this article

A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems

Author

Listed:
  • Yuzi Zhang
  • Howard H. Chang
  • Qu Cheng
  • Philip A. Collender
  • Ting Li
  • Jinge He
  • Justin V. Remais

Abstract

Passive surveillance systems are widely used to monitor diseases occurrence over wide spatial areas due to their cost‐effectiveness and integration into broadly distributed healthcare systems. However, such systems are generally associated with imperfect ascertainment of disease cases and with heterogeneous capture probabilities arising from factors such as differential access to care. Augmenting passive surveillance systems with other surveillance efforts provides a way to estimate the true number of incident cases. We develop a hierarchical modeling framework for analyzing data from multiple surveillance systems that allows for individual‐level covariate‐dependent heterogeneous capture probabilities, and borrows information across surveillance sites to improve estimation of the true number of incident cases. Inference is carried out via a two‐stage Bayesian procedure. Simulation studies illustrated superior performance of the proposed approach with respect to bias, root mean square error, and coverage compared to a model that does not borrow information across sites. We applied the proposed model to data from three surveillance systems reporting pulmonary tuberculosis (PTB) cases in a major center of ongoing transmission in China. The analysis yielded bias‐corrected estimates of PTB cases from the passive system and led to the identification of risk factors associated with PTB rates, as well as factors influencing the operating characteristics of the implemented surveillance systems.

Suggested Citation

  • Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1507-1519
    DOI: 10.1111/biom.13647
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13647
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. Robert M. Dorazio & J. Andrew Royle, 2003. "Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals," Biometrics, The International Biometric Society, vol. 59(2), pages 351-364, June.
    3. Dean T. Jamison & Joel G. Breman & Anthony R. Measham & George Alleyne & Mariam Claeson & David B. Evans & Prabhat Jha & Ann Mills & Philip Musgrove, 2006. "Disease Control Priorities in Developing Countries, Second Edition," World Bank Publications - Books, The World Bank Group, number 7242.
    4. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    5. A. Farcomeni, 2016. "A general class of recapture models based on the conditional capture probabilities," Biometrics, The International Biometric Society, vol. 72(1), pages 116-124, March.
    6. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    7. Lönnroth, Knut & Jaramillo, Ernesto & Williams, Brian G. & Dye, Christopher & Raviglione, Mario, 2009. "Drivers of tuberculosis epidemics: The role of risk factors and social determinants," Social Science & Medicine, Elsevier, vol. 68(12), pages 2240-2246, June.
    8. Brent A. Coull & Alan Agresti, 1999. "The Use of Mixed Logit Models to Reflect Heterogeneity in Capture-Recapture Studies," Biometrics, The International Biometric Society, vol. 55(1), pages 294-301, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danilo Alunni Fegatelli & Luca Tardella, 2016. "Flexible behavioral capture–recapture modeling," Biometrics, The International Biometric Society, vol. 72(1), pages 125-135, March.
    2. Linda Altieri & Alessio Farcomeni & Danilo Alunni Fegatelli, 2023. "Continuous time‐interaction processes for population size estimation, with an application to drug dealing in Italy," Biometrics, The International Biometric Society, vol. 79(2), pages 1254-1267, June.
    3. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    4. Fodé Tounkara & Louis‐Paul Rivest, 2015. "Mixture regression models for closed population capture–recapture data," Biometrics, The International Biometric Society, vol. 71(3), pages 721-730, September.
    5. R. B. O'Hara & S. Lampila & M. Orell, 2009. "Estimation of Rates of Births, Deaths, and Immigration from Mark–Recapture Data," Biometrics, The International Biometric Society, vol. 65(1), pages 275-281, March.
    6. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    7. Jennifer B Smith & Bryan S Stevens & Dwayne R Etter & David M Williams, 2020. "Performance of spatial capture-recapture models with repurposed data: Assessing estimator robustness for retrospective applications," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    8. Richard Arnold & Yu Hayakawa & Paul Yip, 2010. "Capture–Recapture Estimation Using Finite Mixtures of Arbitrary Dimension," Biometrics, The International Biometric Society, vol. 66(2), pages 644-655, June.
    9. Louis-Paul Rivest & Sophie Baillargeon, 2007. "Applications and Extensions of Chao's Moment Estimator for the Size of a Closed Population," Biometrics, The International Biometric Society, vol. 63(4), pages 999-1006, December.
    10. J. Andrew Royle, 2006. "Site Occupancy Models with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 62(1), pages 97-102, March.
    11. Robert M. Dorazio & J. Andrew Royle, 2005. "Rejoinder to "The Performance of Mixture Models in Heterogeneous Closed Population Capture-Recapture"," Biometrics, The International Biometric Society, vol. 61(3), pages 874-876, September.
    12. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2017. "Assessing the Impacts of Time-to-Detection Distribution Assumptions on Detection Probability Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 465-480, December.
    13. Kowalewski, Lucas K. & Chizinski, Christopher J. & Powell, Larkin A. & Pope, Kevin L. & Pegg, Mark A., 2015. "Accuracy or precision: Implications of sample design and methodology on abundance estimation," Ecological Modelling, Elsevier, vol. 316(C), pages 185-190.
    14. Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
    15. Shirley Pledger, 2005. "The Performance of Mixture Models in Heterogeneous Closed Population Capture–Recapture," Biometrics, The International Biometric Society, vol. 61(3), pages 868-873, September.
    16. R. King & S. P. Brooks, 2008. "On the Bayesian Estimation of a Closed Population Size in the Presence of Heterogeneity and Model Uncertainty," Biometrics, The International Biometric Society, vol. 64(3), pages 816-824, September.
    17. Hannah Worthington & Rachel S. McCrea & Ruth King & Richard A. Griffiths, 2019. "Estimation of Population Size When Capture Probability Depends on Individual States," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 154-172, March.
    18. B. J. T. Morgan & M. S. Ridout, 2008. "A new mixture model for capture heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 433-446, September.
    19. William A. Link, 2003. "Nonidentifiability of Population Size from Capture-Recapture Data with Heterogeneous Detection Probabilities," Biometrics, The International Biometric Society, vol. 59(4), pages 1123-1130, December.
    20. Riki Herliansyah & Ruth King & Stuart King, 2022. "Laplace Approximations for Capture–Recapture Models in the Presence of Individual Heterogeneity," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 401-418, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:2:p:1507-1519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.