IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p540-548.html
   My bibliography  Save this article

Multinomial N‐mixture models for removal sampling

Author

Listed:
  • Linda M. Haines

Abstract

Multinomial N‐mixture models are commonly used to fit data from a removal sampling protocol. If the mixing distribution is negative binomial, the distribution of the counts does not appear to have been identified, and practitioners approximate the requisite likelihood by placing an upper bound on the embedded infinite sum. In this paper, the distribution which underpins the multinomial N‐mixture model with a negative binomial mixing distribution is shown to belong to the broad class of multivariate negative binomial distributions. Specifically, the likelihood can be expressed in closed form as the product of conditional and marginal likelihoods and the information matrix shown to be block diagonal. As a consequence, the nature of the maximum likelihood estimates of the unknown parameters and their attendant standard errors can be examined and tests of the hypothesis of the Poisson against the negative binomial mixing distribution formulated. In addition, appropriate multinomial N‐mixture models for data sets which include zero site totals can also be constructed. Two illustrative examples are provided.

Suggested Citation

  • Linda M. Haines, 2020. "Multinomial N‐mixture models for removal sampling," Biometrics, The International Biometric Society, vol. 76(2), pages 540-548, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:540-548
    DOI: 10.1111/biom.13147
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13147
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, January.
    2. Robert M. Dorazio & Howard L. Jelks & Frank Jordan, 2005. "Improving Removal-Based Estimates of Abundance by Sampling a Population of Spatially Distinct Subpopulations," Biometrics, The International Biometric Society, vol. 61(4), pages 1093-1101, December.
    3. Wilson, Paul, 2015. "The misuse of the Vuong test for non-nested models to test for zero-inflation," Economics Letters, Elsevier, vol. 127(C), pages 51-53.
    4. Fiske, Ian & Chandler, Richard, 2011. "unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i10).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafat Mahmood & Michael Jetter, 2020. "Communications Technology and Terrorism," Journal of Conflict Resolution, Peace Science Society (International), vol. 64(1), pages 127-166, January.
    2. Adam C. Howe & Mark C. J. Stoddart & David B. Tindall, 2020. "Media Coverage and Perceived Policy Influence of Environmental Actors: Good Strategy or Pyrrhic Victory?," Politics and Governance, Cogitatio Press, vol. 8(2), pages 298-310.
    3. Elbakidze, Levan & Beeson, Quinn, 2020. "State Regulatory Heterogeneity and Clean Water Act Compliance," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304638, Agricultural and Applied Economics Association.
    4. Hongxiu Li & Horatiu Rus, 2018. "Water Innovation and Water Governance: Adaptive Responses to Regulatory Change and Extreme Weather Events," Working Papers 1801, University of Waterloo, Department of Economics, revised Jan 2018.
    5. Wang, Xu & Zhang, Xiaobo & Xie, Zhuan & Huang, Yiping, 2016. "Roads to innovation: Firm-level evidence from China:," IFPRI discussion papers 1542, International Food Policy Research Institute (IFPRI).
    6. Preusse, Verena & Wollni, Meike, 2021. "Adoption of sustainable agricultural practices in the context of urbanisation and environmental stress – Evidence from farmers in the rural-urban interface of Bangalore, India," 2021 Annual Meeting, August 1-3, Austin, Texas 312690, Agricultural and Applied Economics Association.
    7. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    8. Anders Van Sandt & Craig Wesley Carpenter & Rebekka Dudensing & Scott Loveridge, 2021. "Estimating determinants of healthcare establishment locations with restricted federal administrative data," Health Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 1328-1346, June.
    9. Quoc-Anh Do & Kieu-Trang Nguyen & Anh N. Tran, 2017. "One Mandarin Benefits the Whole Clan: Hometown Favoritism in an Authoritarian Regime," American Economic Journal: Applied Economics, American Economic Association, vol. 9(4), pages 1-29, October.
    10. Kei SAKATA & C. R. McKENZIE, 2022. "Does the expectation of having to look after parents in the future affect current fertility?," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 88(3), pages 283-211, September.
    11. Bono, Pierre-Henri & David, Quentin & Desbordes, Rodolphe & Py, Loriane, 2022. "Metro infrastructure and metropolitan attractiveness," Regional Science and Urban Economics, Elsevier, vol. 93(C).
    12. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    13. Jason H. Bowman & Xiaoping Chen & Ben G. Li, 2021. "A tale of two gravities," Economics and Politics, Wiley Blackwell, vol. 33(1), pages 52-75, March.
    14. Jansen, Anika & Pfeifer, Harald & Raecke, Julia, 2017. "Only the brave? Risk and time preferences of decision makers and firms' investment in worker training," ROA Research Memorandum 002, Maastricht University, Research Centre for Education and the Labour Market (ROA).
    15. Linda M. Haines, 2016. "A Note on the Royle–Nichols Model for Repeated Detection–Nondetection Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 588-598, September.
    16. Fischer, Stefanie & Royer, Heather & White, Corey, 2018. "The impacts of reduced access to abortion and family planning services on abortions, births, and contraceptive purchases," Journal of Public Economics, Elsevier, vol. 167(C), pages 43-68.
    17. Monika Stachowiak-Kudła & Janusz Kudła, 2023. "Measuring the prestige of administrative courts," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3637-3662, August.
    18. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    19. Landry, Craig E. & Shonkwiler, J. Scott & Whitehead, John C., 2020. "Economic Values of Coastal Erosion Management: Joint Estimation of Use and Existence Values with recreation demand and contingent valuation data," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    20. John McLaren & Su Wang, 2020. "Effects of Reduced Workplace Presence on COVID-19 Deaths: An Instrumental-Variables Approach," NBER Working Papers 28275, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:540-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.