IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i3p1017-1027.html
   My bibliography  Save this article

Optimal sampling design and the accuracy of occupancy models

Author

Listed:
  • Henry T. Reich

Abstract

We present general theoretical limits on the possible accuracy (mean squared error or MSE) of occupancy estimates for a large range of occupancy study designs with imperfect detection and confirm our theoretical results via a simulation study. In particular, we show that for a given total survey effort, the best possible MSE is driven by two design‐related factors: the fraction of visits made at occupied sites (regardless of whether that occupancy status is known or not) and the number of visits made to each site with unknown occupancy status (ie, sites with no detections). The limits reveal that there is very little room for improvement over optimal implementations of the three existing occupancy design paradigms: standard design (visit S sites K times each), removal design (visit S sites up to K times each, halting visits to each site following a positive detection), and conditional design (visit S sites once, then resurvey sites with a positive detection an additional K−1 times). For the small portion of the occupancy‐detection parameter space where improvement can be achieved, we introduce a new hybrid survey design with accuracy closer to the theoretical limit, which we illustrate by reanalyzing an existing coyote (Canis latrans) camera trap dataset. Our results provide new clarity and intuition regarding key factors of occupancy study design.

Suggested Citation

  • Henry T. Reich, 2020. "Optimal sampling design and the accuracy of occupancy models," Biometrics, The International Biometric Society, vol. 76(3), pages 1017-1027, September.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:1017-1027
    DOI: 10.1111/biom.13203
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13203
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    2. Steen, Valerie A. & Duarte, Adam & Peterson, James T., 2023. "An evaluation of multistate occupancy models for estimating relative abundance and population trends," Ecological Modelling, Elsevier, vol. 478(C).
    3. Mevin B. Hooten & Christopher K. Wikle & Robert M. Dorazio & J. Andrew Royle, 2007. "Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions," Biometrics, The International Biometric Society, vol. 63(2), pages 558-567, June.
    4. D. Dail & L. Madsen, 2011. "Models for Estimating Abundance from Repeated Counts of an Open Metapopulation," Biometrics, The International Biometric Society, vol. 67(2), pages 577-587, June.
    5. Whitlock, Steven L. & Womble, Jamie N. & Peterson, James T., 2020. "Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings," Ecological Modelling, Elsevier, vol. 420(C).
    6. Xiaoli Fan & Miguel I. Gómez & Shady S. Atallah & Jon M. Conrad, 2020. "A Bayesian State‐Space Approach for Invasive Species Management: The Case of Spotted Wing Drosophila," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1227-1244, August.
    7. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    8. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2017. "Reprint of: Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 359(C), pages 461-467.
    9. Xinhai Li & Ning Li & Baidu Li & Yuehua Sun & Erhu Gao, 2022. "AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models," Land, MDPI, vol. 11(5), pages 1-13, April.
    10. Linda M. Haines, 2016. "Maximum likelihood estimation for N‐mixture models," Biometrics, The International Biometric Society, vol. 72(4), pages 1235-1245, December.
    11. Yinqiu Ji & Christopher C. M. Baker & Viorel D. Popescu & Jiaxin Wang & Chunying Wu & Zhengyang Wang & Yuanheng Li & Lin Wang & Chaolang Hua & Zhongxing Yang & Chunyan Yang & Charles C. Y. Xu & Alex D, 2022. "Measuring protected-area effectiveness using vertebrate distributions from leech iDNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    12. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    13. Perry J. Williams & Cody Schroeder & Pat Jackson, 2020. "Estimating Reproduction and Survival of Unmarked Juveniles Using Aerial Images and Marked Adults," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 133-147, June.
    14. Wen‐Han Hwang & Richard Huggins & Jakub Stoklosa, 2022. "A model for analyzing clustered occurrence data," Biometrics, The International Biometric Society, vol. 78(2), pages 598-611, June.
    15. Jami E MacNeil & Rod N Williams, 2014. "Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    16. Duarte, Adam & Adams, Michael J. & Peterson, James T., 2018. "Fitting N-mixture models to count data with unmodeled heterogeneity: Bias, diagnostics, and alternative approaches," Ecological Modelling, Elsevier, vol. 374(C), pages 51-59.
    17. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
    18. Eve Bohnett & Jessica Schulz & Robert Dobbs & Thomas Hoctor & Dave Hulse & Bilal Ahmad & Wajid Rashid & Hardin Waddle, 2023. "Shorebird Monitoring Using Spatially Explicit Occupancy and Abundance," Land, MDPI, vol. 12(4), pages 1-15, April.
    19. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2017. "Assessing the Impacts of Time-to-Detection Distribution Assumptions on Detection Probability Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(4), pages 465-480, December.
    20. Kowalewski, Lucas K. & Chizinski, Christopher J. & Powell, Larkin A. & Pope, Kevin L. & Pegg, Mark A., 2015. "Accuracy or precision: Implications of sample design and methodology on abundance estimation," Ecological Modelling, Elsevier, vol. 316(C), pages 185-190.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:3:p:1017-1027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.