IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i5p1069-1079.html
   My bibliography  Save this article

Estimating an homogeneous series of a population abundance indicator despite changes in data collection procedure: A hierarchical Bayesian modelling approach

Author

Listed:
  • Brun, Mélanie
  • Abraham, Christophe
  • Jarry, Marc
  • Dumas, Jacques
  • Lange, Frédéric
  • Prévost, Etienne

Abstract

Abundance indicators are required both to assess and to manage wild populations. As new techniques are developed and teams in charge of gathering the data change, data collection procedures (DCPs) can evolve in space and time. How to estimate an homogeneous series of abundance indicator despite changes in DCP? To tackle this question a hierarchical Bayesian modelling (HBM) approach is proposed. It integrates multiple DCPs in order to derive a single abundance indicator that can be compared over space and time irrespective of the DCP used. Compared to single DCP models, it takes further advantage for abundance estimation of the joint treatment of a larger set of spatio-temporal units. After presenting the general formulation of our HBM approach, it is applied to the juvenile Atlantic salmon (Salmo salar L.) population of the River Nivelle (France). Posterior model checking, using χ2 discrepancy measure, do not reveal any inadequacy between the model and the data. Despite a change in the DCP used (successive removals to catch-per-unit of effort), a unique abundance indicator for the 425 spatio-temporal units (site×year) sampled over twenty-four years (1985–2008) is estimated. The HBM approach allows the assessment of precision of the abundance estimates and shows variation between DCPs: a reduction in precision is observed during the most recent years (2005–2008) when only the catch-per-unit of effort DCP was used. The merits and generality of our HBM approach are discussed. We contend it extends previous single DCP models or inter-calibration of two DCPs, and it could be applied to a wide range of specific situations (taxon and DCPs).

Suggested Citation

  • Brun, Mélanie & Abraham, Christophe & Jarry, Marc & Dumas, Jacques & Lange, Frédéric & Prévost, Etienne, 2011. "Estimating an homogeneous series of a population abundance indicator despite changes in data collection procedure: A hierarchical Bayesian modelling approach," Ecological Modelling, Elsevier, vol. 222(5), pages 1069-1079.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:5:p:1069-1079
    DOI: 10.1016/j.ecolmodel.2010.10.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010006332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.10.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Russell B. Millar, 2009. "Comparison of Hierarchical Bayesian Models for Overdispersed Count Data using DIC and Bayes' Factors," Biometrics, The International Biometric Society, vol. 65(3), pages 962-969, September.
    2. Robert M. Dorazio & Howard L. Jelks & Frank Jordan, 2005. "Improving Removal-Based Estimates of Abundance by Sampling a Population of Spatially Distinct Subpopulations," Biometrics, The International Biometric Society, vol. 61(4), pages 1093-1101, December.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Ward, Eric J., 2008. "A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools," Ecological Modelling, Elsevier, vol. 211(1), pages 1-10.
    5. Andrew Gelman, 2003. "A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing," International Statistical Review, International Statistical Institute, vol. 71(2), pages 369-382, August.
    6. Andrew Gelman & Iven Van Mechelen & Geert Verbeke & Daniel F. Heitjan & Michel Meulders, 2005. "Multiple Imputation for Model Checking: Completed-Data Plots with Missing and Latent Data," Biometrics, The International Biometric Society, vol. 61(1), pages 74-85, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Fast computation of the deviance information criterion for latent variable models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 847-859.
    2. Armstrong, Doug P. & Brooks, Ronald J., 2013. "Application of hierarchical biphasic growth models to long-term data for snapping turtles," Ecological Modelling, Elsevier, vol. 250(C), pages 119-125.
    3. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    4. Iraj Kazemi & Fatemeh Hassanzadeh, 2021. "Marginalized random-effects models for clustered binomial data through innovative link functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 197-228, June.
    5. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Integrated Deviance Information Criterion for Latent Variable Models," Economics and Statistics Working Papers 6-2018, Singapore Management University, School of Economics.
    6. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    7. Hui, Francis K.C., 2017. "Model-based simultaneous clustering and ordination of multivariate abundance data in ecology," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 1-10.
    8. Tenan, Simone & O’Hara, Robert B. & Hendriks, Iris & Tavecchia, Giacomo, 2014. "Bayesian model selection: The steepest mountain to climb," Ecological Modelling, Elsevier, vol. 283(C), pages 62-69.
    9. Ye Yang & Osman Doğan & Süleyman Taşpınar, 2023. "Observed-data DIC for spatial panel data models," Empirical Economics, Springer, vol. 64(3), pages 1281-1314, March.
    10. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    11. Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.
    12. Abadi, Fitsum & Barbraud, Christophe & Besson, Dominique & Bried, Joël & Crochet, Pierre-André & Delord, Karine & Forcada, Jaume & Grosbois, Vladimir & Phillips, Richard A. & Sagar, Paul & Thompson, P, 2014. "Importance of accounting for phylogenetic dependence in multi-species mark–recapture studies," Ecological Modelling, Elsevier, vol. 273(C), pages 236-241.
    13. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    14. McDonald, Cory P. & Urban, Noel R., 2010. "Using a model selection criterion to identify appropriate complexity in aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 221(3), pages 428-432.
    15. Fernanda B. Rizzato & Roseli A. Leandro & Clarice G.B. Demétrio & Geert Molenberghs, 2016. "A Bayesian approach to analyse overdispersed longitudinal count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2085-2109, August.
    16. Edgar C. Merkle & Daniel Furr & Sophia Rabe-Hesketh, 2019. "Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 802-829, September.
    17. R. B. Millar & S. McKechnie, 2014. "A one-step-ahead pseudo-DIC for comparison of Bayesian state-space models," Biometrics, The International Biometric Society, vol. 70(4), pages 972-980, December.
    18. Shonosuke Sugasawa & Kosuke Morikawa & Keisuke Takahata, 2022. "Bayesian semiparametric modeling of response mechanism for nonignorable missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 101-117, March.
    19. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
    20. David Lunn & Jessica Barrett & Michael Sweeting & Simon Thompson, 2013. "Fully Bayesian hierarchical modelling in two stages, with application to meta-analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 551-572, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:5:p:1069-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.