IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v478y2023ics0304380023000315.html
   My bibliography  Save this article

An evaluation of multistate occupancy models for estimating relative abundance and population trends

Author

Listed:
  • Steen, Valerie A.
  • Duarte, Adam
  • Peterson, James T.

Abstract

Detecting spatiotemporal changes in the abundances of organisms is key to effectively conserving species. While indices of abundance have long been used, there has been a shift toward model-based estimators that account for the detection process. Popular approaches including traditional occupancy models and N-mixture models entail tradeoffs. The traditional occupancy approach requires the researcher coarsen the characterization of abundance to the probability that a site is occupied or unoccupied. Conversely, N-mixture models make use of variation in counts, but perform poorly when individuals have low detectability or move into or out of sites between visits. Multistate occupancy models that differentiate relatively abundant from non-abundant states have the potential to fill this gap but have been underexplored. We conducted a simulation study to test whether multistate occupancy models could capture spatial abundance patterns and detect population declines in the face of low individual detection probability (p ≤ 0.3) and unmodeled heterogeneity (e.g., that arising from individual movement). We considered 10,773 scenarios to examine the effects of differing amounts of heterogeneity as well as alternative study designs, population parameters, and modeling choices. We tracked bias in the proportion of sites estimated to be in the abundant state for single-season models, and power to detect a declining trend across multiple years. We also evaluated data diagnostic metrics to provide guidance to users. Multistate occupancy models were able to differentiate sites with higher abundances from sites with lower abundances when there were at least medium levels of spatial heterogeneity in true abundances. If different sites were randomly selected each year, power to detect even large population declines (65%) was poor (power < 0.8). However, if the same sites were surveyed each year, and a dynamic multistate occupancy was used, multistate occupancy models could detect (power ≥ 0.8) relatively small declines (5-40%) in 20% of scenarios, and frequently detect large declines of 45-60% (mean power = 0.92). Conservation decisions rely on detecting change reliably, rarely needing absolute abundance information. Multistate occupancy models can improve our ability to detect changing abundance while accommodating low individual detection probability and heterogeneity in count monitoring data.

Suggested Citation

  • Steen, Valerie A. & Duarte, Adam & Peterson, James T., 2023. "An evaluation of multistate occupancy models for estimating relative abundance and population trends," Ecological Modelling, Elsevier, vol. 478(C).
  • Handle: RePEc:eee:ecomod:v:478:y:2023:i:c:s0304380023000315
    DOI: 10.1016/j.ecolmodel.2023.110303
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard J. Barker & Matthew R. Schofield & William A. Link & John R. Sauer, 2018. "On the reliability of N†mixture models for count data," Biometrics, The International Biometric Society, vol. 74(1), pages 369-377, March.
    2. Duarte, Adam & Adams, Michael J. & Peterson, James T., 2018. "Fitting N-mixture models to count data with unmodeled heterogeneity: Bias, diagnostics, and alternative approaches," Ecological Modelling, Elsevier, vol. 374(C), pages 51-59.
    3. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam Martin-Schwarze & Jarad Niemi & Philip Dixon, 2021. "Joint Modeling of Distances and Times in Point-Count Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 289-305, June.
    2. Perry J. Williams & Cody Schroeder & Pat Jackson, 2020. "Estimating Reproduction and Survival of Unmarked Juveniles Using Aerial Images and Marked Adults," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 133-147, June.
    3. Whitlock, Steven L. & Womble, Jamie N. & Peterson, James T., 2020. "Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings," Ecological Modelling, Elsevier, vol. 420(C).
    4. Henry T. Reich, 2020. "Optimal sampling design and the accuracy of occupancy models," Biometrics, The International Biometric Society, vol. 76(3), pages 1017-1027, September.
    5. Jami E MacNeil & Rod N Williams, 2014. "Effects of Timber Harvests and Silvicultural Edges on Terrestrial Salamanders," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    6. Wohner, Patti J. & Duarte, Adam & Peterson, James T., 2024. "An integrated analysis for estimation of survival, growth, and movement of unmarked juvenile anadromous fish," Ecological Modelling, Elsevier, vol. 495(C).
    7. Yuzi Zhang & Howard H. Chang & Qu Cheng & Philip A. Collender & Ting Li & Jinge He & Justin V. Remais, 2023. "A hierarchical model for analyzing multisite individual‐level disease surveillance data from multiple systems," Biometrics, The International Biometric Society, vol. 79(2), pages 1507-1519, June.
    8. Verniest, Fabien & Greulich, Sabine, 2019. "Methods for assessing the effects of environmental parameters on biological communities in long-term ecological studies - A literature review," Ecological Modelling, Elsevier, vol. 414(C).
    9. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2013. "Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 263(C), pages 244-250.
    10. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2017. "Reprint of: Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 359(C), pages 461-467.
    11. Xinhai Li & Ning Li & Baidu Li & Yuehua Sun & Erhu Gao, 2022. "AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models," Land, MDPI, vol. 11(5), pages 1-13, April.
    12. Xinyi Lu & Mevin B. Hooten & Andee Kaplan & Jamie N. Womble & Michael R. Bower, 2022. "Improving Wildlife Population Inference Using Aerial Imagery and Entity Resolution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 364-381, June.
    13. Linda M. Haines, 2016. "Maximum likelihood estimation for N‐mixture models," Biometrics, The International Biometric Society, vol. 72(4), pages 1235-1245, December.
    14. Beth E Ross & Daniel S Sullins & David A Haukos, 2019. "Using an individual-based model to assess common biases in lek-based count data to estimate population trajectories of lesser prairie-chickens," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-17, May.
    15. Kowalewski, Lucas K. & Chizinski, Christopher J. & Powell, Larkin A. & Pope, Kevin L. & Pegg, Mark A., 2015. "Accuracy or precision: Implications of sample design and methodology on abundance estimation," Ecological Modelling, Elsevier, vol. 316(C), pages 185-190.
    16. Matthew R. P. Parker & Laura L. E. Cowen & Jiguo Cao & Lloyd T. Elliott, 2023. "Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 43-58, March.
    17. Robert M Dorazio & Edward F Connor, 2014. "Estimating Abundances of Interacting Species Using Morphological Traits, Foraging Guilds, and Habitat," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    18. Robert M. Dorazio & Howard L. Jelks & Frank Jordan, 2005. "Improving Removal-Based Estimates of Abundance by Sampling a Population of Spatially Distinct Subpopulations," Biometrics, The International Biometric Society, vol. 61(4), pages 1093-1101, December.
    19. Richard J. Barker & Matthew R. Schofield & William A. Link & John R. Sauer, 2018. "On the reliability of N†mixture models for count data," Biometrics, The International Biometric Society, vol. 74(1), pages 369-377, March.
    20. Rafael A. Moral & John Hinde & Clarice G. B. Demétrio & Carolina Reigada & Wesley A. C. Godoy, 2018. "Models for Jointly Estimating Abundances of Two Unmarked Site-Associated Species Subject to Imperfect Detection," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 20-38, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:478:y:2023:i:c:s0304380023000315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.