IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i4p1235-1245.html
   My bibliography  Save this article

Maximum likelihood estimation for N‐mixture models

Author

Listed:
  • Linda M. Haines

Abstract

The focus of this article is on the nature of the likelihood associated with N‐mixture models for repeated count data. It is shown that the infinite sum embedded in the likelihood associated with the Poisson mixing distribution can be expressed in terms of a hypergeometric function and, thence, in closed form. The resultant expression for the likelihood can be readily computed to a high degree of accuracy and is algebraically tractable. Specifically, the likelihood equations can be simplified to some advantage, the concentrated likelihood in the probability of detection formulated and problematic cases identified. The results are illustrated by means of a simulation study and a real world example. The study is extended to N‐mixture models with a negative binomial mixing distribution and results similar to those for the Poisson case obtained. N‐mixture models with mixing distributions which accommodate excess zeros and, separately, with a beta‐binomial distribution rather than a binomial used to model the intra‐site counts are also investigated. However the results for these settings, while computationally attractive, do not provide insight into the nature of the maximum likelihood estimates.

Suggested Citation

  • Linda M. Haines, 2016. "Maximum likelihood estimation for N‐mixture models," Biometrics, The International Biometric Society, vol. 72(4), pages 1235-1245, December.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1235-1245
    DOI: 10.1111/biom.12521
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12521
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    2. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    3. Karlis, Dimitris & Ntzoufras, Ioannis, 2005. "Bivariate Poisson and Diagonal Inflated Bivariate Poisson Regression Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i10).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linda M. Haines, 2016. "A Note on the Royle–Nichols Model for Repeated Detection–Nondetection Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 588-598, September.
    2. Rafael A. Moral & John Hinde & Clarice G. B. Demétrio & Carolina Reigada & Wesley A. C. Godoy, 2018. "Models for Jointly Estimating Abundances of Two Unmarked Site-Associated Species Subject to Imperfect Detection," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 20-38, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard J. Barker & Matthew R. Schofield & William A. Link & John R. Sauer, 2018. "On the reliability of N†mixture models for count data," Biometrics, The International Biometric Society, vol. 74(1), pages 369-377, March.
    2. Rafael A. Moral & John Hinde & Clarice G. B. Demétrio & Carolina Reigada & Wesley A. C. Godoy, 2018. "Models for Jointly Estimating Abundances of Two Unmarked Site-Associated Species Subject to Imperfect Detection," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 20-38, March.
    3. Luke S. Benz & Michael J. Lopez, 2023. "Estimating the change in soccer’s home advantage during the Covid-19 pandemic using bivariate Poisson regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 205-232, March.
    4. F. Novoa-Muñoz & M. Jiménez-Gamero, 2014. "Testing for the bivariate Poisson distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 771-793, August.
    5. Kenneth F Kellner & Robert K Swihart, 2014. "Accounting for Imperfect Detection in Ecology: A Quantitative Review," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-8, October.
    6. J. James Reade & Carl Singleton & Alasdair Brown, 2021. "Evaluating strange forecasts: The curious case of football match scorelines," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(2), pages 261-285, May.
    7. Alberto Cocaña-Fernández & Luciano Sánchez & José Ranilla, 2016. "Improving the Eco-Efficiency of High Performance Computing Clusters Using EECluster," Energies, MDPI, vol. 9(3), pages 1-16, March.
    8. Steen, Valerie A. & Duarte, Adam & Peterson, James T., 2023. "An evaluation of multistate occupancy models for estimating relative abundance and population trends," Ecological Modelling, Elsevier, vol. 478(C).
    9. Mevin B. Hooten & Christopher K. Wikle & Robert M. Dorazio & J. Andrew Royle, 2007. "Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions," Biometrics, The International Biometric Society, vol. 63(2), pages 558-567, June.
    10. J Reade & C Singleton & L Vaughan Williams, 2020. "Betting Markets for English Premier League Results and Scorelines: Evaluating a Simple Forecasting Model," Economic Issues Journal Articles, Economic Issues, vol. 25(1), pages 87-106, March.
    11. D. Dail & L. Madsen, 2011. "Models for Estimating Abundance from Repeated Counts of an Open Metapopulation," Biometrics, The International Biometric Society, vol. 67(2), pages 577-587, June.
    12. Whitlock, Steven L. & Womble, Jamie N. & Peterson, James T., 2020. "Modelling pinniped abundance and distribution by combining counts at terrestrial sites and in-water sightings," Ecological Modelling, Elsevier, vol. 420(C).
    13. Xiaoli Fan & Miguel I. Gómez & Shady S. Atallah & Jon M. Conrad, 2020. "A Bayesian State‐Space Approach for Invasive Species Management: The Case of Spotted Wing Drosophila," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1227-1244, August.
    14. Tahir Ekin & Stephen Walker & Paul Damien, 2023. "Augmented simulation methods for discrete stochastic optimization with recourse," Annals of Operations Research, Springer, vol. 320(2), pages 771-793, January.
    15. Emily B. Dennis & Byron J.T. Morgan & Martin S. Ridout, 2015. "Computational aspects of N-mixture models," Biometrics, The International Biometric Society, vol. 71(1), pages 237-246, March.
    16. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2017. "Reprint of: Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 359(C), pages 461-467.
    17. Xinhai Li & Ning Li & Baidu Li & Yuehua Sun & Erhu Gao, 2022. "AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models," Land, MDPI, vol. 11(5), pages 1-13, April.
    18. Xinyi Lu & Mevin B. Hooten & Andee Kaplan & Jamie N. Womble & Michael R. Bower, 2022. "Improving Wildlife Population Inference Using Aerial Imagery and Entity Resolution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 364-381, June.
    19. Yinqiu Ji & Christopher C. M. Baker & Viorel D. Popescu & Jiaxin Wang & Chunying Wu & Zhengyang Wang & Yuanheng Li & Lin Wang & Chaolang Hua & Zhongxing Yang & Chunyan Yang & Charles C. Y. Xu & Alex D, 2022. "Measuring protected-area effectiveness using vertebrate distributions from leech iDNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    20. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:4:p:1235-1245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.