IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v359y2017icp461-467.html
   My bibliography  Save this article

Reprint of: Fitting population growth models in the presence of measurement and detection error

Author

Listed:
  • Hefley, Trevor J.
  • Tyre, Andrew J.
  • Blankenship, Erin E.

Abstract

Population time series data from field studies are complex and statistical analysis requires models that describe nonlinear population dynamics and observational errors. State-space formulations of stochastic population growth models have been used to account for measurement error caused by the data collection process. Parameter estimation, inference, and prediction are all sensitive to measurement error. The observational process may also result in detection errors and if unaccounted for will result in biased parameter estimates. We developed an N-mixture state-space modeling framework to estimate and correct for errors in detection while estimating population model parameters. We tested our methods using simulated data sets and compared the results to those obtained with state-space models when detection is perfect and when detection is ignored. Our N-mixture state-space model yielded parameter estimates of similar quality to a state-space model when detection is perfect. Our results show that ignoring detection errors can lead to biased parameter estimates including an overestimated growth rate, underestimated equilibrium population size and estimated population state that is misleading. We recommend that researchers consider the possibility of detection errors when collecting and analyzing population time series data.

Suggested Citation

  • Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2017. "Reprint of: Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 359(C), pages 461-467.
  • Handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:461-467
    DOI: 10.1016/j.ecolmodel.2013.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004882
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Little, Roderick J., 2006. "Calibrated Bayes: A Bayes/Frequentist Roadmap," The American Statistician, American Statistical Association, vol. 60, pages 213-223, August.
    2. J. Andrew Royle, 2004. "N-Mixture Models for Estimating Population Size from Spatially Replicated Counts," Biometrics, The International Biometric Society, vol. 60(1), pages 108-115, March.
    3. Péter Sólymos & Subhash Lele & Erin Bayne, 2012. "Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error," Environmetrics, John Wiley & Sons, Ltd., vol. 23(2), pages 197-205, March.
    4. Pedersen, M.W. & Berg, C.W. & Thygesen, U.H. & Nielsen, A. & Madsen, H., 2011. "Estimation methods for nonlinear state-space models in ecology," Ecological Modelling, Elsevier, vol. 222(8), pages 1394-1400.
    5. Lele, Subhash R. & Nadeem, Khurram & Schmuland, Byron, 2010. "Estimability and Likelihood Inference for Generalized Linear Mixed Models Using Data Cloning," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1617-1625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2013. "Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 263(C), pages 244-250.
    2. Perry J. Williams & Cody Schroeder & Pat Jackson, 2020. "Estimating Reproduction and Survival of Unmarked Juveniles Using Aerial Images and Marked Adults," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(2), pages 133-147, June.
    3. Wen‐Han Hwang & Richard Huggins & Jakub Stoklosa, 2022. "A model for analyzing clustered occurrence data," Biometrics, The International Biometric Society, vol. 78(2), pages 598-611, June.
    4. Chun Asaph Young & Schouten Barry & Wagner James, 2017. "JOS Special Issue on Responsive and Adaptive Survey Design: Looking Back to See Forward – Editorial: In Memory of Professor Stephen E. Fienberg, 1942–2016," Journal of Official Statistics, Sciendo, vol. 33(3), pages 571-577, September.
    5. Simone Vincenzi & Marc Mangel & Alain J Crivelli & Stephan Munch & Hans J Skaug, 2014. "Determining Individual Variation in Growth and Its Implication for Life-History and Population Processes Using the Empirical Bayes Method," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-16, September.
    6. D. A. S. Fraser & N. Reid & E. Marras & G. Y. Yi, 2010. "Default priors for Bayesian and frequentist inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 631-654, November.
    7. Steen, Valerie A. & Duarte, Adam & Peterson, James T., 2023. "An evaluation of multistate occupancy models for estimating relative abundance and population trends," Ecological Modelling, Elsevier, vol. 478(C).
    8. Mevin B. Hooten & Christopher K. Wikle & Robert M. Dorazio & J. Andrew Royle, 2007. "Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions," Biometrics, The International Biometric Society, vol. 63(2), pages 558-567, June.
    9. Leo Polansky & Ken B. Newman & Lara Mitchell, 2021. "Improving inference for nonlinear state‐space models of animal population dynamics given biased sequential life stage data," Biometrics, The International Biometric Society, vol. 77(1), pages 352-361, March.
    10. Bermudez, P. de Zea & Marín, J. Miguel & Rue, Håvard & Veiga, Helena, 2024. "Integrated nested Laplace approximations for threshold stochastic volatility models," Econometrics and Statistics, Elsevier, vol. 30(C), pages 15-35.
    11. Mahmoud Torabi, 2012. "Spatial modeling using frequentist approach for disease mapping," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2431-2439, July.
    12. Alonso, Pablo J., 2015. "Hierarchical Lee-Carter model estimation through data cloning applied to demographically linked countries," DES - Working Papers. Statistics and Econometrics. WS ws1510, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    14. Yinqiu Ji & Christopher C. M. Baker & Viorel D. Popescu & Jiaxin Wang & Chunying Wu & Zhengyang Wang & Yuanheng Li & Lin Wang & Chaolang Hua & Zhongxing Yang & Chunyan Yang & Charles C. Y. Xu & Alex D, 2022. "Measuring protected-area effectiveness using vertebrate distributions from leech iDNA," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Minxian Yang, 2014. "Normality of Posterior Distribution Under Misspecification and Nonsmoothness, and Bayes Factor for Davies' Problem," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 305-336, June.
    16. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    17. Solbu, Erik Blystad & Engen, Steinar & Diserud, Ola Håvard, 2015. "Guidelines when estimating temporal changes in density dependent populations," Ecological Modelling, Elsevier, vol. 313(C), pages 355-376.
    18. John Geweke, 2007. "Bayesian Model Comparison and Validation," American Economic Review, American Economic Association, vol. 97(2), pages 60-64, May.
    19. Henry T. Reich, 2020. "Optimal sampling design and the accuracy of occupancy models," Biometrics, The International Biometric Society, vol. 76(3), pages 1017-1027, September.
    20. Carles Serrat & Montserrat Ru� & Carmen Armero & Xavier Piulachs & H�ctor Perpi��n & Anabel Forte & �lvaro P�ez & Guadalupe G�mez, 2015. "Frequentist and Bayesian approaches for a joint model for prostate cancer risk and longitudinal prostate-specific antigen data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1223-1239, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:461-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.