IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v58y2002i2p316-323.html
   My bibliography  Save this article

Modeling Multivariate Survival Data by a Semiparametric Random Effects Proportional Odds Model

Author

Listed:
  • K. F. Lam
  • Y. W. Lee
  • T. L. Leung

Abstract

No abstract is available for this item.

Suggested Citation

  • K. F. Lam & Y. W. Lee & T. L. Leung, 2002. "Modeling Multivariate Survival Data by a Semiparametric Random Effects Proportional Odds Model," Biometrics, The International Biometric Society, vol. 58(2), pages 316-323, June.
  • Handle: RePEc:bla:biomet:v:58:y:2002:i:2:p:316-323
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2002.00316.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    2. Steve Bennett, 1983. "Log‐Logistic Regression Models for Survival Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 165-171, June.
    3. A. N. Pettitt, 1984. "Proportional Odds Models for Survival Data and Estimates Using Ranks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(2), pages 169-175, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Munda & Catherine Legrand & Luc Duchateau & Paul Janssen, 2016. "Testing for decreasing heterogeneity in a new time-varying frailty model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 591-606, December.
    2. Yuan Mengdie & Diao Guoqing, 2014. "Semiparametric Odds Rate Model for Modeling Short-Term and Long-Term Effects with Application to a Breast Cancer Genetic Study," The International Journal of Biostatistics, De Gruyter, vol. 10(2), pages 231-249, November.
    3. Goele Massonnet & Paul Janssen & Tomasz Burzykowski, 2008. "Fitting Conditional Survival Models to Meta‐Analytic Data by Using a Transformation Toward Mixed‐Effects Models," Biometrics, The International Biometric Society, vol. 64(3), pages 834-842, September.
    4. Wensheng Zhu & Yuan Jiang & Heping Zhang, 2012. "Nonparametric Covariate-Adjusted Association Tests Based on the Generalized Kendall's Tau," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 1-11, March.
    5. Emilie Beauchamp & Tom Clements & E. J. Milner-Gulland, 2019. "Investigating Perceptions of Land Issues in a Threatened Landscape in Northern Cambodia," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    6. Michael L. Pennell & David B. Dunson, 2006. "Bayesian Semiparametric Dynamic Frailty Models for Multiple Event Time Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1044-1052, December.
    7. Timothy Hanson & Mingan Yang, 2007. "Bayesian Semiparametric Proportional Odds Models," Biometrics, The International Biometric Society, vol. 63(1), pages 88-95, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xifen Huang & Chaosong Xiong & Tao Jiang & Junfeng Lu & Jinfeng Xu, 2022. "Efficient Estimation and Inference in the Proportional Odds Model for Survival Data," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    2. Denis Fougère & Julien Pouget, 2003. "Les déterminants économiques de l'entrée dans la fonction publique," Économie et Statistique, Programme National Persée, vol. 369(1), pages 15-48.
    3. Fernandez-Cornejo, Jorge & Wechsler, Seth James, 2012. "Fifteen Years Later: Examining the Adoption of Bt Corn Varieties by U.S. Farmers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124257, Agricultural and Applied Economics Association.
    4. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    5. Troske, Kenneth R. & Voicu, Alexandru, 2010. "Joint estimation of sequential labor force participation and fertility decisions using Markov chain Monte Carlo techniques," Labour Economics, Elsevier, vol. 17(1), pages 150-169, January.
    6. Arimura, Toshi H. & Darnall, Nicole & Katayama, Hajime, 2011. "Is ISO 14001 a gateway to more advanced voluntary action? The case of green supply chain management," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 170-182, March.
    7. Jaehwan Kim & Greg M. Allenby & Peter E. Rossi, 2002. "Modeling Consumer Demand for Variety," Marketing Science, INFORMS, vol. 21(3), pages 229-250, December.
    8. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    9. Jörg Breitung & Michael Lechner, 1996. "Estimation de modèles non linéaires sur données de panel par la méthode des moments généralisés," Économie et Prévision, Programme National Persée, vol. 126(5), pages 191-203.
    10. Mutuc, Maria Erlinda M. & Rejesus, Roderick M. & Pan, Suwen & Yorobe, Jose M., Jr., 2012. "Impact Assessment of Bt Corn Adoption in the Philippines," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 44(1), pages 1-19, February.
    11. Kajal Lahiri & Chuanming Gao & Bernard Wixon, 2020. "Value of Sample Separation Information in a Sequential Probit Model," Arthaniti: Journal of Economic Theory and Practice, , vol. 19(2), pages 151-176, December.
    12. Hendrik P. van Dalen & Aico P. van Vuuren, 2003. "Greasing the Wheels of Trade," Tinbergen Institute Discussion Papers 03-066/1, Tinbergen Institute.
    13. Thierry Kamionka & Guy Lacroix, 2018. "Homeownership, Labour Market Transitions and Earnings," Cahiers de recherche 1819, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
    14. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    15. Jenkins, Amanda & Velandia, Margarita & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Martin, Steven W., 2011. "Factors Influencing the Selection of Precision Farming Information Sources by Cotton Producers," Agricultural and Resource Economics Review, Cambridge University Press, vol. 40(2), pages 307-320, September.
    16. Roman Liesenfeld & Guilherme Valle Moura & Jean‐François Richard, 2010. "Determinants and Dynamics of Current Account Reversals: An Empirical Analysis," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 486-517, August.
    17. Geweke, John F. & Keane, Michael P. & Runkle, David E., 1997. "Statistical inference in the multinomial multiperiod probit model," Journal of Econometrics, Elsevier, vol. 80(1), pages 125-165, September.
    18. Dong, Diansheng & Kaiser, Harry M., 2003. "Estimation of a Censored AIDS Model: A Simulated Amemiya-Tobin Approach," Research Bulletins 122113, Cornell University, Department of Applied Economics and Management.
    19. Dong, Diansheng & Stewart, Hayden & McLaughlin, Patrick W., 2017. "A New Approach for Modeling Household Food Demand with Panel Data: The Case of Cold Cereals," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258195, Agricultural and Applied Economics Association.
    20. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:58:y:2002:i:2:p:316-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.