IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p1-11.html
   My bibliography  Save this article

Nonparametric Covariate-Adjusted Association Tests Based on the Generalized Kendall's Tau

Author

Listed:
  • Wensheng Zhu
  • Yuan Jiang
  • Heping Zhang

Abstract

Identifying the risk factors for comorbidity is important in psychiatric research. Empirically, studies have shown that testing multiple correlated traits simultaneously is more powerful than testing a single trait at a time in association analysis. Furthermore, for complex diseases, especially mental illnesses and behavioral disorders, the traits are often recorded in different scales, such as dichotomous, ordinal, and quantitative. In the absence of covariates, nonparametric association tests have been developed for multiple complex traits to study comorbidity. However, genetic studies generally contain measurements of some covariates that may affect the relationship between the risk factors of major interest (such as genes) and the outcomes. While it is relatively easy to adjust for these covariates in a parametric model for quantitative traits, it is challenging to adjust for covariates when there are multiple complex traits with possibly different scales. In this article, we propose a nonparametric test for multiple complex traits that can adjust for covariate effects. The test aims to achieve an optimal scheme of adjustment by using a maximum statistic calculated from multiple adjusted test statistics. We derive the asymptotic null distribution of the maximum test statistic and also propose a resampling approach, both of which can be used to assess the significance of our test. Simulations are conducted to compare the Type I error and power of the nonparametric adjusted test to the unadjusted test and other existing adjusted tests. The empirical results suggest that our proposed test increases the power through adjustment for covariates when there exist environmental effects and is more robust to model misspecifications than some existing parametric adjusted tests. We further demonstrate the advantage of our test by analyzing a dataset on genetics of alcoholism.

Suggested Citation

  • Wensheng Zhu & Yuan Jiang & Heping Zhang, 2012. "Nonparametric Covariate-Adjusted Association Tests Based on the Generalized Kendall's Tau," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 1-11, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:1-11
    DOI: 10.1080/01621459.2011.643707
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.643707
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2011.643707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. F. Lam & Y. W. Lee & T. L. Leung, 2002. "Modeling Multivariate Survival Data by a Semiparametric Random Effects Proportional Odds Model," Biometrics, The International Biometric Society, vol. 58(2), pages 316-323, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan Jiang & Ni Li & Heping Zhang, 2014. "Identifying Genetic Variants for Addiction via Propensity Score Adjusted Generalized Kendall's Tau," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 905-930, September.
    2. Tingting Cui & Pengfei Wang & Wensheng Zhu, 2021. "Covariate-adjusted multiple testing in genome-wide association studies via factorial hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 737-757, September.
    3. Liu, Dungang & Li, Shaobo & Yu, Yan & Moustaki, Irini, 2020. "Assessing partial association between ordinal variables: quantification, visualization, and hypothesis testing," LSE Research Online Documents on Economics 105558, London School of Economics and Political Science, LSE Library.
    4. Wang, Jiangzhou & Cui, Tingting & Zhu, Wensheng & Wang, Pengfei, 2023. "Covariate-modulated large-scale multiple testing under dependence," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    5. Weiming Zhang & Michael P. Epstein & Tasha E. Fingerlin & Debashis Ghosh, 2017. "Links Between the Sequence Kernel Association and the Kernel-Based Adaptive Cluster Tests," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 246-258, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goele Massonnet & Paul Janssen & Tomasz Burzykowski, 2008. "Fitting Conditional Survival Models to Meta‐Analytic Data by Using a Transformation Toward Mixed‐Effects Models," Biometrics, The International Biometric Society, vol. 64(3), pages 834-842, September.
    2. Yuan Mengdie & Diao Guoqing, 2014. "Semiparametric Odds Rate Model for Modeling Short-Term and Long-Term Effects with Application to a Breast Cancer Genetic Study," The International Journal of Biostatistics, De Gruyter, vol. 10(2), pages 231-249, November.
    3. Timothy Hanson & Mingan Yang, 2007. "Bayesian Semiparametric Proportional Odds Models," Biometrics, The International Biometric Society, vol. 63(1), pages 88-95, March.
    4. Emilie Beauchamp & Tom Clements & E. J. Milner-Gulland, 2019. "Investigating Perceptions of Land Issues in a Threatened Landscape in Northern Cambodia," Sustainability, MDPI, vol. 11(21), pages 1-20, October.
    5. Marco Munda & Catherine Legrand & Luc Duchateau & Paul Janssen, 2016. "Testing for decreasing heterogeneity in a new time-varying frailty model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(4), pages 591-606, December.
    6. Michael L. Pennell & David B. Dunson, 2006. "Bayesian Semiparametric Dynamic Frailty Models for Multiple Event Time Data," Biometrics, The International Biometric Society, vol. 62(4), pages 1044-1052, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.