IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v10y2014i2p19n4.html
   My bibliography  Save this article

Semiparametric Odds Rate Model for Modeling Short-Term and Long-Term Effects with Application to a Breast Cancer Genetic Study

Author

Listed:
  • Yuan Mengdie

    (Department of Statistics, George Mason University, 4400 University Drive, MSN 4A7, Fairfax, VA 22030, USA)

  • Diao Guoqing

    (Department of Statistics, George Mason University, 4400 University Drive, MSN 4A7, Fairfax, VA 22030, USA)

Abstract

The proportional odds model is commonly used in the analysis of failure time data. The assumption of constant odds ratios over time in the proportional odds model, however, can be violated in some applications. Motivated by a genetic study with breast cancer patients, we propose a novel semiparametric odds rate model for the analysis of right-censored survival data. The proposed model incorporates the short-term and long-term covariate effects on the failure time data and includes the proportional odds model as a nested model. We develop efficient likelihood-based inference procedures and establish the large sample properties of the proposed nonparametric maximum likelihood estimators. Simulation studies demonstrate that the proposed methods perform well in practical settings. An application to the motivating example is provided.

Suggested Citation

  • Yuan Mengdie & Diao Guoqing, 2014. "Semiparametric Odds Rate Model for Modeling Short-Term and Long-Term Effects with Application to a Breast Cancer Genetic Study," The International Journal of Biostatistics, De Gruyter, vol. 10(2), pages 231-249, November.
  • Handle: RePEc:bpj:ijbist:v:10:y:2014:i:2:p:19:n:4
    DOI: 10.1515/ijb-2013-0037
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2013-0037
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2013-0037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yi & Lin, Xihong, 2006. "Semiparametric Normal Transformation Models for Spatially Correlated Survival Data," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 591-603, June.
    2. Jean-Yves Dauxois, 2003. "Testing the proportional odds model under random censoring," Biometrika, Biometrika Trust, vol. 90(4), pages 913-922, December.
    3. Zeng, Donglin & Yin, Guosheng & Ibrahim, Joseph G., 2006. "Semiparametric Transformation Models for Survival Data With a Cure Fraction," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 670-684, June.
    4. Guoqing Diao & Guosheng Yin, 2012. "A general transformation class of semiparametric cure rate frailty models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 959-989, October.
    5. Yi Li & Ram C. Tiwari & Subharup Guha, 2007. "Mixture cure survival models with dependent censoring," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 285-306, June.
    6. K. F. Lam & Y. W. Lee & T. L. Leung, 2002. "Modeling Multivariate Survival Data by a Semiparametric Random Effects Proportional Odds Model," Biometrics, The International Biometric Society, vol. 58(2), pages 316-323, June.
    7. David Hunter & Kenneth Lange, 2002. "Computing Estimates in the Proportional Odds Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 155-168, March.
    8. Song Yang & Ross Prentice, 2005. "Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data," Biometrika, Biometrika Trust, vol. 92(1), pages 1-17, March.
    9. Zeng, Donglin & Lin, D.Y. & Yin, Guosheng, 2005. "Maximum Likelihood Estimation for the Proportional Odds Model With Random Effects," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 470-483, June.
    10. Othus, Megan & Li, Yi & Tiwari, Ram C., 2009. "A Class of Semiparametric Mixture Cure Survival Models With Dependent Censoring," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1241-1250.
    11. Ying Qing Chen & Nan Hu & Su-Chun Cheng & Philippa Musoke & Lue Ping Zhao, 2012. "Estimating Regression Parameters in an Extended Proportional Odds Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 318-330, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Tao & Xiang, Liming, 2016. "Partially linear transformation cure models for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 257-269.
    2. Man-Hua Chen & Xingwei Tong, 2020. "Varying coefficient transformation cure models for failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 518-544, July.
    3. Weibin Zhong & Guoqing Diao, 2023. "Semiparametric Density Ratio Model for Survival Data with a Cure Fraction," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 217-241, April.
    4. Yeqian Liu & Tao Hu & Jianguo Sun, 2017. "Regression analysis of current status data in the presence of a cured subgroup and dependent censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 626-650, October.
    5. Bremhorst, Vincent & Lambert, Philippe, 2013. "Flexible estimation in cure survival models using Bayesian P-splines," LIDAM Discussion Papers ISBA 2013039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Weiyu Li & Valentin Patilea, 2018. "A dimension reduction approach for conditional Kaplan–Meier estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 295-315, June.
    7. Bertrand, Aurelie & Legrand, Catherine & Leonard, Daniel & Van Keilegom, Ingrid, 2016. "Robustness of estimation methods in a survival cure model with mismeasured covariates," LIDAM Discussion Papers ISBA 2016006, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Gressani, Oswaldo & Lambert, Philippe, 2016. "Fast Bayesian inference in semi-parametric P-spline cure survival models using Laplace approximations," LIDAM Discussion Papers ISBA 2016041, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Bremhorst, Vincent & Lambert, Philippe, 2016. "Flexible estimation in cure survival models using Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 270-284.
    10. López-Cheda, Ana & Cao, Ricardo & Jácome, M. Amalia & Van Keilegom, Ingrid, 2017. "Nonparametric incidence estimation and bootstrap bandwidth selection in mixture cure models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 144-165.
    11. Gressani, Oswaldo & Lambert, Philippe, 2018. "Fast Bayesian inference using Laplace approximations in a flexible promotion time cure model based on P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 151-167.
    12. Jue Hou & Christina D. Chambers & Ronghui Xu, 2018. "A nonparametric maximum likelihood approach for survival data with observed cured subjects, left truncation and right-censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 612-651, October.
    13. Yuanshan Wu & Guosheng Yin, 2013. "Cure Rate Quantile Regression for Censored Data With a Survival Fraction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1517-1531, December.
    14. Hu, Tao & Xiang, Liming, 2013. "Efficient estimation for semiparametric cure models with interval-censored data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 139-151.
    15. Lopez-Cheda , Ana & Cao, Ricardo & Jacome, Maria Amalia & Van Keilegom, Ingrid, 2015. "Nonparametric incidence and latency estimation in mixture cure models," LIDAM Discussion Papers ISBA 2015014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    17. Timothy Hanson & Mingan Yang, 2007. "Bayesian Semiparametric Proportional Odds Models," Biometrics, The International Biometric Society, vol. 63(1), pages 88-95, March.
    18. Yuan Wu & Christina D. Chambers & Ronghui Xu, 2019. "Semiparametric sieve maximum likelihood estimation under cure model with partly interval censored and left truncated data for application to spontaneous abortion," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 507-528, July.
    19. Olayidé Boussari & Laurent Bordes & Gaëlle Romain & Marc Colonna & Nadine Bossard & Laurent Remontet & Valérie Jooste, 2021. "Modeling excess hazard with time‐to‐cure as a parameter," Biometrics, The International Biometric Society, vol. 77(4), pages 1289-1302, December.
    20. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:10:y:2014:i:2:p:19:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.