IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3362-d916505.html
   My bibliography  Save this article

Efficient Estimation and Inference in the Proportional Odds Model for Survival Data

Author

Listed:
  • Xifen Huang

    (School of Mathematics, Yunnan Normal University, Kunming 650092, China)

  • Chaosong Xiong

    (School of Mathematics, Yunnan Normal University, Kunming 650092, China)

  • Tao Jiang

    (Hangzhou College of Commerce, Zhejiang Gongshang University, Hangzhou 311508, China)

  • Junfeng Lu

    (Hangzhou College of Commerce, Zhejiang Gongshang University, Hangzhou 311508, China)

  • Jinfeng Xu

    (Hangzhou College of Commerce, Zhejiang Gongshang University, Hangzhou 311508, China)

Abstract

In modeling time-to-event data with long-term survivors, the proportional hazards model is widely used for its easy and direct interpretation as well as the flexibility to accommodate the past information and allow time-varying predictors. This becomes most relevant when the mortality of individuals converges with time, and the estimation and inference based upon the proportional odds model can often yield more accurate and reasonable results than the classical Cox’s proportional hazards model. Along with the fast development of the data science technologies, computational challenges for survival data with increasing sample size and diverging parameter dimension exist. Currently, existing methods for analyzing such data are computationally inconvenient. In this paper, we propose efficient computational methods for analyzing survival data in the proportional odds model, where the nonparametric maximum likelihood approach is combined with the minorization-maximization (MM) algorithm and the regularization scheme to yield fast and accurate estimation and inferential procedures. The illustration of the methodology using extensive simulation studies and then the application to the Veterans’ Administration lung cancer data is also given.

Suggested Citation

  • Xifen Huang & Chaosong Xiong & Tao Jiang & Junfeng Lu & Jinfeng Xu, 2022. "Efficient Estimation and Inference in the Proportional Odds Model for Survival Data," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3362-:d:916505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hien Nguyen & Geoffrey McLachlan, 2015. "Maximum likelihood estimation of Gaussian mixture models without matrix operations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 371-394, December.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Liang Zhu & Xingwei Tong & Dingjiao Cai & Yimei Li & Ryan Sun & Deo K. Srivastava & Melissa M. Hudson, 2021. "Maximum likelihood estimation for the proportional odds model with mixed interval-censored failure time data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 48(8), pages 1496-1512, June.
    4. Hui Zou, 2008. "A note on path-based variable selection in the penalized proportional hazards model," Biometrika, Biometrika Trust, vol. 95(1), pages 241-247.
    5. Steve Bennett, 1983. "Log‐Logistic Regression Models for Survival Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 32(2), pages 165-171, June.
    6. A. N. Pettitt, 1984. "Proportional Odds Models for Survival Data and Estimates Using Ranks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(2), pages 169-175, June.
    7. Daniel Rabinowitz & Rebecca A. Betensky & Anastasios A. Tsiatis, 2000. "Using Conditional Logistic Regression to Fit Proportional Odds Models to Interval Censored Data," Biometrics, The International Biometric Society, vol. 56(2), pages 511-518, June.
    8. David Hunter & Kenneth Lange, 2002. "Computing Estimates in the Proportional Odds Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 155-168, March.
    9. Guo-Liang Tian & Xiqian Ding & Yin Liu & Man-Lai Tang, 2019. "Some new statistical methods for a class of zero-truncated discrete distributions with applications," Computational Statistics, Springer, vol. 34(3), pages 1393-1426, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    2. Yingli Pan & Wen Cai & Zhan Liu, 2022. "Inference for non-probability samples under high-dimensional covariate-adjusted superpopulation model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 955-979, October.
    3. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    4. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    5. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    6. Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
    7. Huang, Zhensheng & Pang, Zhen & Lin, Bingqing & Shao, Quanxi, 2014. "Model structure selection in single-index-coefficient regression models," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 159-175.
    8. Yichao Wu, 2011. "An ordinary differential equation-based solution path algorithm," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 185-199.
    9. David R. Hunter, 2014. "Discussion," International Statistical Review, International Statistical Institute, vol. 82(1), pages 76-79, April.
    10. K. F. Lam & Y. W. Lee & T. L. Leung, 2002. "Modeling Multivariate Survival Data by a Semiparametric Random Effects Proportional Odds Model," Biometrics, The International Biometric Society, vol. 58(2), pages 316-323, June.
    11. Kin Yau Wong & Yair Goldberg & Jason P. Fine, 2016. "Oracle estimation of parametric models under boundary constraints," Biometrics, The International Biometric Society, vol. 72(4), pages 1173-1183, December.
    12. Ke Yu & Shan Luo, 2022. "A sequential feature selection procedure for high-dimensional Cox proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1109-1142, December.
    13. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    14. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    15. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    16. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    17. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    18. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    20. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3362-:d:916505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.