IDEAS home Printed from https://ideas.repec.org/a/abf/journl/v21y2019i1p15588-15352.html
   My bibliography  Save this article

Applications of Machine Learning in Medicine

Author

Listed:
  • Rosario Megna

    (Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy)

  • Alberto Cuocolo

    (Department of Advanced Biomedical Sciences, Naples, Italy)

  • Mario Petretta

    (Department of Translational Medical Sciences, Naples, Italy)

Abstract

Machine Learning is a branch of artificial intelligence that provides algorithms able to learn automatically, improve from experience, and make previsions...

Suggested Citation

  • Rosario Megna & Alberto Cuocolo & Mario Petretta, 2019. "Applications of Machine Learning in Medicine," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 20(1), pages 15350-15352, August.
  • Handle: RePEc:abf:journl:v:21:y:2019:i:1:p:15588-15352
    DOI: 10.26717/BJSTR.2019.21.003503
    as

    Download full text from publisher

    File URL: https://biomedres.us/pdfs/BJSTR.MS.ID.003503.pdf
    Download Restriction: no

    File URL: https://biomedres.us/fulltexts/BJSTR.MS.ID.003503.php
    Download Restriction: no

    File URL: https://libkey.io/10.26717/BJSTR.2019.21.003503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Sun & Yue Liu & Jianhui Zhao & Bin Lu & Siyun Zhou & Wei Lu & Jingsun Wei & Yeting Hu & Xiangxing Kong & Junshun Gao & Hong Guan & Junli Gao & Qian Xiao & Xue Li, 2024. "Plasma proteomic and polygenic profiling improve risk stratification and personalized screening for colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Minta Thomas & Yu-Ru Su & Elisabeth A. Rosenthal & Lori C. Sakoda & Stephanie L. Schmit & Maria N. Timofeeva & Zhishan Chen & Ceres Fernandez-Rozadilla & Philip J. Law & Neil Murphy & Robert Carreras-, 2023. "Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Konstantina Chalkou & Andrew J. Vickers & Fabio Pellegrini & Andrea Manca & Georgia Salanti, 2023. "Decision Curve Analysis for Personalized Treatment Choice between Multiple Options," Medical Decision Making, , vol. 43(3), pages 337-349, April.
    4. Khushal Arjan & Lui G Forni & Richard M Venn & David Hunt & Luke Eliot Hodgson, 2021. "Clinical decision-making in older adults following emergency admission to hospital. Derivation and validation of a risk stratification score: OPERA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
    5. Kevin Sandeman & Juho T Eineluoto & Joona Pohjonen & Andrew Erickson & Tuomas P Kilpeläinen & Petrus Järvinen & Henrikki Santti & Anssi Petas & Mika Matikainen & Suvi Marjasuo & Anu Kenttämies & Tuoma, 2020. "Prostate MRI added to CAPRA, MSKCC and Partin cancer nomograms significantly enhances the prediction of adverse findings and biochemical recurrence after radical prostatectomy," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    6. Alex Thompson & Scott Devine & Mike Kattan & Andrew Muir, 2014. "Prediction of Treatment Week Eight Response & Sustained Virologic Response in Patients Treated with Boceprevir Plus Peginterferon Alfa and Ribavirin," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
    7. Danny J N Wong & Steve Harris & Arun Sahni & James R Bedford & Laura Cortes & Richard Shawyer & Andrew M Wilson & Helen A Lindsay & Doug Campbell & Scott Popham & Lisa M Barneto & Paul S Myles & SNAP-, 2020. "Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: An international prospective cohort study," PLOS Medicine, Public Library of Science, vol. 17(10), pages 1-22, October.
    8. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    9. Ryan W Gan & Diana Sun & Amanda R Tatro & Shirley Cohen-Mekelburg & Wyndy L Wiitala & Ji Zhu & Akbar K Waljee, 2021. "Replicating prediction algorithms for hospitalization and corticosteroid use in patients with inflammatory bowel disease," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-13, September.
    10. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    11. Minyong Kang & Chang Wook Jeong & Woo Suk Choi & Yong Hyun Park & Sung Yong Cho & Sangchul Lee & Seung Bae Lee & Ja Hyeon Ku & Sung Kyu Hong & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim , 2014. "Pre- and Post-Operative Nomograms to Predict Recurrence-Free Probability in Korean Men with Clinically Localized Prostate Cancer," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    12. Jiann-Der Lee & Ya-Wen Kuo & Chuan-Pin Lee & Yen-Chu Huang & Meng Lee & Tsong-Hai Lee, 2022. "Development and Validation of a Novel Score for Predicting Paroxysmal Atrial Fibrillation in Acute Ischemic Stroke," IJERPH, MDPI, vol. 19(12), pages 1-11, June.
    13. Jérôme Allyn & Cyril Ferdynus & Michel Bohrer & Cécile Dalban & Dorothée Valance & Nicolas Allou, 2016. "Simplified Acute Physiology Score II as Predictor of Mortality in Intensive Care Units: A Decision Curve Analysis," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-11, October.
    14. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    15. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    16. Bernd Lütkenhöner & Türker Basel, 2013. "Predictive Modeling for Diagnostic Tests with High Specificity, but Low Sensitivity: A Study of the Glycerol Test in Patients with Suspected Menière’s Disease," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    17. Christian Bock & Joan Elias Walter & Bastian Rieck & Ivo Strebel & Klara Rumora & Ibrahim Schaefer & Michael J. Zellweger & Karsten Borgwardt & Christian Müller, 2024. "Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Thanutorn Wongthida & Lalita Lumkul & Jayanton Patumanond & Wattana Wongtheptian & Dilok Piyayotai & Phichayut Phinyo, 2022. "Development of a Clinical Risk Score for Prediction of Life-Threatening Arrhythmia Events in Patients with ST Elevated Acute Coronary Syndrome after Primary Percutaneous Coronary Intervention," IJERPH, MDPI, vol. 19(4), pages 1-18, February.
    19. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    20. Bacchetti Peter & Boylan Ross, 2009. "Estimating Complex Multi-State Misclassification Rates for Biopsy-Measured Liver Fibrosis in Patients with Hepatitis C," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-27, January.

    More about this item

    Keywords

    Biomedical Sciences; Biomedical Research; Technical Research;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abf:journl:v:21:y:2019:i:1:p:15588-15352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Angela Roy (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.