IDEAS home Printed from https://ideas.repec.org/a/plo/pmed00/1003253.html
   My bibliography  Save this article

Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: An international prospective cohort study

Author

Listed:
  • Danny J N Wong
  • Steve Harris
  • Arun Sahni
  • James R Bedford
  • Laura Cortes
  • Richard Shawyer
  • Andrew M Wilson
  • Helen A Lindsay
  • Doug Campbell
  • Scott Popham
  • Lisa M Barneto
  • Paul S Myles
  • SNAP-2: EPICCS collaborators
  • S Ramani Moonesinghe

Abstract

Background: Preoperative risk prediction is important for guiding clinical decision-making and resource allocation. Clinicians frequently rely solely on their own clinical judgement for risk prediction rather than objective measures. We aimed to compare the accuracy of freely available objective surgical risk tools with subjective clinical assessment in predicting 30-day mortality. Methods and findings: We conducted a prospective observational study in 274 hospitals in the United Kingdom (UK), Australia, and New Zealand. For 1 week in 2017, prospective risk, surgical, and outcome data were collected on all adults aged 18 years and over undergoing surgery requiring at least a 1-night stay in hospital. Recruitment bias was avoided through an ethical waiver to patient consent; a mixture of rural, urban, district, and university hospitals participated. We compared subjective assessment with 3 previously published, open-access objective risk tools for predicting 30-day mortality: the Portsmouth-Physiology and Operative Severity Score for the enUmeration of Mortality (P-POSSUM), Surgical Risk Scale (SRS), and Surgical Outcome Risk Tool (SORT). We then developed a logistic regression model combining subjective assessment and the best objective tool and compared its performance to each constituent method alone. We included 22,631 patients in the study: 52.8% were female, median age was 62 years (interquartile range [IQR] 46 to 73 years), median postoperative length of stay was 3 days (IQR 1 to 6), and inpatient 30-day mortality was 1.4%. Clinicians used subjective assessment alone in 88.7% of cases. All methods overpredicted risk, but visual inspection of plots showed the SORT to have the best calibration. The SORT demonstrated the best discrimination of the objective tools (SORT Area Under Receiver Operating Characteristic curve [AUROC] = 0.90, 95% confidence interval [CI]: 0.88–0.92; P-POSSUM = 0.89, 95% CI 0.88–0.91; SRS = 0.85, 95% CI 0.82–0.87). Subjective assessment demonstrated good discrimination (AUROC = 0.89, 95% CI: 0.86–0.91) that was not different from the SORT (p = 0.309). Combining subjective assessment and the SORT improved discrimination (bootstrap optimism-corrected AUROC = 0.92, 95% CI: 0.90–0.94) and demonstrated continuous Net Reclassification Improvement (NRI = 0.13, 95% CI: 0.06–0.20, p

Suggested Citation

  • Danny J N Wong & Steve Harris & Arun Sahni & James R Bedford & Laura Cortes & Richard Shawyer & Andrew M Wilson & Helen A Lindsay & Doug Campbell & Scott Popham & Lisa M Barneto & Paul S Myles & SNAP-, 2020. "Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: An international prospective cohort study," PLOS Medicine, Public Library of Science, vol. 17(10), pages 1-22, October.
  • Handle: RePEc:plo:pmed00:1003253
    DOI: 10.1371/journal.pmed.1003253
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1003253
    Download Restriction: no

    File URL: https://journals.plos.org/plosmedicine/article/file?id=10.1371/journal.pmed.1003253&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pmed.1003253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    2. Mchale, Jean V., 2017. "Innovation, informed consent, health research and the Supreme Court: Montgomery v Lanarkshire – a brave new world?," Health Economics, Policy and Law, Cambridge University Press, vol. 12(4), pages 435-452, October.
    3. Kristin M Corey & Sehj Kashyap & Elizabeth Lorenzi & Sandhya A Lagoo-Deenadayalan & Katherine Heller & Krista Whalen & Suresh Balu & Mitchell T Heflin & Shelley R McDonald & Madhav Swaminathan & Mark , 2018. "Development and validation of machine learning models to identify high-risk surgical patients using automatically curated electronic health record data (Pythia): A retrospective, single-site study," PLOS Medicine, Public Library of Science, vol. 15(11), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    4. Konstantina Chalkou & Andrew J. Vickers & Fabio Pellegrini & Andrea Manca & Georgia Salanti, 2023. "Decision Curve Analysis for Personalized Treatment Choice between Multiple Options," Medical Decision Making, , vol. 43(3), pages 337-349, April.
    5. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    7. Bernd Lütkenhöner & Türker Basel, 2013. "Predictive Modeling for Diagnostic Tests with High Specificity, but Low Sensitivity: A Study of the Glycerol Test in Patients with Suspected Menière’s Disease," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    8. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.
    9. Minta Thomas & Yu-Ru Su & Elisabeth A. Rosenthal & Lori C. Sakoda & Stephanie L. Schmit & Maria N. Timofeeva & Zhishan Chen & Ceres Fernandez-Rozadilla & Philip J. Law & Neil Murphy & Robert Carreras-, 2023. "Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Khushal Arjan & Lui G Forni & Richard M Venn & David Hunt & Luke Eliot Hodgson, 2021. "Clinical decision-making in older adults following emergency admission to hospital. Derivation and validation of a risk stratification score: OPERA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
    11. Alex Thompson & Scott Devine & Mike Kattan & Andrew Muir, 2014. "Prediction of Treatment Week Eight Response & Sustained Virologic Response in Patients Treated with Boceprevir Plus Peginterferon Alfa and Ribavirin," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
    12. Christian Bock & Joan Elias Walter & Bastian Rieck & Ivo Strebel & Klara Rumora & Ibrahim Schaefer & Michael J. Zellweger & Karsten Borgwardt & Christian Müller, 2024. "Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Tracey L. Marsh & Holly Janes & Margaret S. Pepe, 2020. "Statistical inference for net benefit measures in biomarker validation studies," Biometrics, The International Biometric Society, vol. 76(3), pages 843-852, September.
    14. Chang Wook Jeong & Sangchul Lee & Jin-Woo Jung & Byung Ki Lee & Seong Jin Jeong & Sung Kyu Hong & Seok-Soo Byun & Sang Eun Lee, 2014. "Mobile Application-Based Seoul National University Prostate Cancer Risk Calculator: Development, Validation, and Comparative Analysis with Two Western Risk Calculators in Korean Men," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    15. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    16. Hormuzd A. Katki & Ionut Bebu, 2021. "A simple framework to identify optimal cost‐effective risk thresholds for a single screen: Comparison to Decision Curve Analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 887-903, July.
    17. Mark Sendak & Freya Gulamali & Suresh Balu, 2023. "Comment on "The Potential Impact of Artificial Intelligence on Health Care Spending"," NBER Chapters, in: The Economics of Artificial Intelligence: Health Care Challenges, pages 78-86, National Bureau of Economic Research, Inc.
    18. Stuart G. Baker, 2024. "Evaluating Risk Prediction with Data Collection Costs: Novel Estimation of Test Tradeoff Curves," Medical Decision Making, , vol. 44(1), pages 53-63, January.
    19. Tae Yoon Lee & Paul Gustafson & Mohsen Sadatsafavi, 2023. "Closed-Form Solution of the Unit Normal Loss Integral in 2 Dimensions, with Application in Value-of-Information Analysis," Medical Decision Making, , vol. 43(5), pages 621-626, July.
    20. Baker Stuart G. & Van Calster Ben & Steyerberg Ewout W., 2012. "Evaluating a New Marker for Risk Prediction Using the Test Tradeoff: An Update," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-37, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pmed00:1003253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosmedicine (email available below). General contact details of provider: https://journals.plos.org/plosmedicine/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.