IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0094441.html
   My bibliography  Save this article

Mobile Application-Based Seoul National University Prostate Cancer Risk Calculator: Development, Validation, and Comparative Analysis with Two Western Risk Calculators in Korean Men

Author

Listed:
  • Chang Wook Jeong
  • Sangchul Lee
  • Jin-Woo Jung
  • Byung Ki Lee
  • Seong Jin Jeong
  • Sung Kyu Hong
  • Seok-Soo Byun
  • Sang Eun Lee

Abstract

Objectives: We developed a mobile application-based Seoul National University Prostate Cancer Risk Calculator (SNUPC-RC) that predicts the probability of prostate cancer (PC) at the initial prostate biopsy in a Korean cohort. Additionally, the application was validated and subjected to head-to-head comparisons with internet-based Western risk calculators in a validation cohort. Here, we describe its development and validation. Patients and Methods: As a retrospective study, consecutive men who underwent initial prostate biopsy with more than 12 cores at a tertiary center were included. In the development stage, 3,482 cases from May 2003 through November 2010 were analyzed. Clinical variables were evaluated, and the final prediction model was developed using the logistic regression model. In the validation stage, 1,112 cases from December 2010 through June 2012 were used. SNUPC-RC was compared with the European Randomized Study of Screening for PC Risk Calculator (ERSPC-RC) and the Prostate Cancer Prevention Trial Risk Calculator (PCPT-RC). The predictive accuracy was assessed using the area under the receiver operating characteristic curve (AUC). The clinical value was evaluated using decision curve analysis. Results: PC was diagnosed in 1,240 (35.6%) and 417 (37.5%) men in the development and validation cohorts, respectively. Age, prostate-specific antigen level, prostate size, and abnormality on digital rectal examination or transrectal ultrasonography were significant factors of PC and were included in the final model. The predictive accuracy in the development cohort was 0.786. In the validation cohort, AUC was significantly higher for the SNUPC-RC (0.811) than for ERSPC-RC (0.768, p

Suggested Citation

  • Chang Wook Jeong & Sangchul Lee & Jin-Woo Jung & Byung Ki Lee & Seong Jin Jeong & Sung Kyu Hong & Seok-Soo Byun & Sang Eun Lee, 2014. "Mobile Application-Based Seoul National University Prostate Cancer Risk Calculator: Development, Validation, and Comparative Analysis with Two Western Risk Calculators in Korean Men," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
  • Handle: RePEc:plo:pone00:0094441
    DOI: 10.1371/journal.pone.0094441
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094441
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0094441&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0094441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    2. Ewout W. Steyerberg & Andrew J. Vickers, 2008. "Decision Curve Analysis: A Discussion," Medical Decision Making, , vol. 28(1), pages 146-149, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    4. Konstantina Chalkou & Andrew J. Vickers & Fabio Pellegrini & Andrea Manca & Georgia Salanti, 2023. "Decision Curve Analysis for Personalized Treatment Choice between Multiple Options," Medical Decision Making, , vol. 43(3), pages 337-349, April.
    5. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    7. Bernd Lütkenhöner & Türker Basel, 2013. "Predictive Modeling for Diagnostic Tests with High Specificity, but Low Sensitivity: A Study of the Glycerol Test in Patients with Suspected Menière’s Disease," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    8. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.
    9. Minta Thomas & Yu-Ru Su & Elisabeth A. Rosenthal & Lori C. Sakoda & Stephanie L. Schmit & Maria N. Timofeeva & Zhishan Chen & Ceres Fernandez-Rozadilla & Philip J. Law & Neil Murphy & Robert Carreras-, 2023. "Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Khushal Arjan & Lui G Forni & Richard M Venn & David Hunt & Luke Eliot Hodgson, 2021. "Clinical decision-making in older adults following emergency admission to hospital. Derivation and validation of a risk stratification score: OPERA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
    11. Alex Thompson & Scott Devine & Mike Kattan & Andrew Muir, 2014. "Prediction of Treatment Week Eight Response & Sustained Virologic Response in Patients Treated with Boceprevir Plus Peginterferon Alfa and Ribavirin," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
    12. Christian Bock & Joan Elias Walter & Bastian Rieck & Ivo Strebel & Klara Rumora & Ibrahim Schaefer & Michael J. Zellweger & Karsten Borgwardt & Christian Müller, 2024. "Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Tracey L. Marsh & Holly Janes & Margaret S. Pepe, 2020. "Statistical inference for net benefit measures in biomarker validation studies," Biometrics, The International Biometric Society, vol. 76(3), pages 843-852, September.
    14. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    15. Hormuzd A. Katki & Ionut Bebu, 2021. "A simple framework to identify optimal cost‐effective risk thresholds for a single screen: Comparison to Decision Curve Analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 887-903, July.
    16. Stuart G. Baker, 2024. "Evaluating Risk Prediction with Data Collection Costs: Novel Estimation of Test Tradeoff Curves," Medical Decision Making, , vol. 44(1), pages 53-63, January.
    17. Tae Yoon Lee & Paul Gustafson & Mohsen Sadatsafavi, 2023. "Closed-Form Solution of the Unit Normal Loss Integral in 2 Dimensions, with Application in Value-of-Information Analysis," Medical Decision Making, , vol. 43(5), pages 621-626, July.
    18. Baker Stuart G. & Van Calster Ben & Steyerberg Ewout W., 2012. "Evaluating a New Marker for Risk Prediction Using the Test Tradeoff: An Update," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-37, March.
    19. Ryan W Gan & Diana Sun & Amanda R Tatro & Shirley Cohen-Mekelburg & Wyndy L Wiitala & Ji Zhu & Akbar K Waljee, 2021. "Replicating prediction algorithms for hospitalization and corticosteroid use in patients with inflammatory bowel disease," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-13, September.
    20. Gu Wen & Pepe Margaret, 2009. "Measures to Summarize and Compare the Predictive Capacity of Markers," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-49, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0094441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.