IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0120552.html
   My bibliography  Save this article

External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder

Author

Listed:
  • Ja Hyeon Ku
  • Myong Kim
  • Seok-Soo Byun
  • Hyeon Jeong
  • Cheol Kwak
  • Hyeon Hoe Kim
  • Sang Eun Lee

Abstract

Purpose: To externally validate models to predict LN metastsis; Karakiewicz nomogram, clinical nodal staging score (cNSS), and pathologic nodal staging score (pNSS) using a different cohort Materials and Methods: Clinicopathologic data from 500 patients who underwent radical cystectomy and pelvic lymphadenectomy were analyzed. The overall predictive values of models were compared with the criteria of overall performance, discrimination, calibration, and clinical usefulness. Results: Presence of pN+ stages was recorded in 117 patients (23.4%). Agreement between clinical and pathologic stage was noted in 174 (34.8%). Based on Nagelkerke’s peudo-R2 and brier score, pNSS demonstrated best overall performance. Area under the receiver operating characteristics curve, showed that pNSS had the best discriminatory ability. In all models, calibration was on average correct (calibration-in-the-large coefficient = zero). On decision curve analysis, pNSS performed better than other models across a wide range of threshold probabilities. Conclusions: When compared to pNSS, current precystectomy models such as the Karakiewicz nomogram and cNSS cannot predict the probability of LN metastases accurately. The findings suggest that the application of pNSS to Asian patients is feasible.

Suggested Citation

  • Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
  • Handle: RePEc:plo:pone00:0120552
    DOI: 10.1371/journal.pone.0120552
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120552
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0120552&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0120552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    2. Michael E. Miller & Carl D. Langefeld & William M. Tierney & Siu L. Hui & Clement J. McDonald, 1993. "Validation of Probabilistic Predictions," Medical Decision Making, , vol. 13(1), pages 49-57, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    3. Jing Sun & Yue Liu & Jianhui Zhao & Bin Lu & Siyun Zhou & Wei Lu & Jingsun Wei & Yeting Hu & Xiangxing Kong & Junshun Gao & Hong Guan & Junli Gao & Qian Xiao & Xue Li, 2024. "Plasma proteomic and polygenic profiling improve risk stratification and personalized screening for colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.
    5. Khushal Arjan & Lui G Forni & Richard M Venn & David Hunt & Luke Eliot Hodgson, 2021. "Clinical decision-making in older adults following emergency admission to hospital. Derivation and validation of a risk stratification score: OPERA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
    6. Christian Bock & Joan Elias Walter & Bastian Rieck & Ivo Strebel & Klara Rumora & Ibrahim Schaefer & Michael J. Zellweger & Karsten Borgwardt & Christian Müller, 2024. "Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Tracey L. Marsh & Holly Janes & Margaret S. Pepe, 2020. "Statistical inference for net benefit measures in biomarker validation studies," Biometrics, The International Biometric Society, vol. 76(3), pages 843-852, September.
    8. Chang Wook Jeong & Sangchul Lee & Jin-Woo Jung & Byung Ki Lee & Seong Jin Jeong & Sung Kyu Hong & Seok-Soo Byun & Sang Eun Lee, 2014. "Mobile Application-Based Seoul National University Prostate Cancer Risk Calculator: Development, Validation, and Comparative Analysis with Two Western Risk Calculators in Korean Men," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    9. Selin Merdan & Christine L. Barnett & Brian T. Denton & James E. Montie & David C. Miller, 2021. "OR Practice–Data Analytics for Optimal Detection of Metastatic Prostate Cancer," Operations Research, INFORMS, vol. 69(3), pages 774-794, May.
    10. Kim Wopken & Hendrik P Bijl & Arjen van der Schaaf & Miranda E Christianen & Olga Chouvalova & Sjoukje F Oosting & Bernard F A M van der Laan & Jan L N Roodenburg & C René Leemans & Ben J Slotman & Pa, 2014. "Development and Validation of a Prediction Model for Tube Feeding Dependence after Curative (Chemo-) Radiation in Head and Neck Cancer," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    11. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    12. Tae Yoon Lee & Paul Gustafson & Mohsen Sadatsafavi, 2023. "Closed-Form Solution of the Unit Normal Loss Integral in 2 Dimensions, with Application in Value-of-Information Analysis," Medical Decision Making, , vol. 43(5), pages 621-626, July.
    13. Jan Weymeirsch & Julian Ernst & Ralf Münnich, 2024. "Model Recalibration for Regional Bias Reduction in Dynamic Microsimulations," Mathematics, MDPI, vol. 12(10), pages 1-25, May.
    14. Baker Stuart G. & Van Calster Ben & Steyerberg Ewout W., 2012. "Evaluating a New Marker for Risk Prediction Using the Test Tradeoff: An Update," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-37, March.
    15. Kevin Sandeman & Juho T Eineluoto & Joona Pohjonen & Andrew Erickson & Tuomas P Kilpeläinen & Petrus Järvinen & Henrikki Santti & Anssi Petas & Mika Matikainen & Suvi Marjasuo & Anu Kenttämies & Tuoma, 2020. "Prostate MRI added to CAPRA, MSKCC and Partin cancer nomograms significantly enhances the prediction of adverse findings and biochemical recurrence after radical prostatectomy," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    16. Danny J N Wong & Steve Harris & Arun Sahni & James R Bedford & Laura Cortes & Richard Shawyer & Andrew M Wilson & Helen A Lindsay & Doug Campbell & Scott Popham & Lisa M Barneto & Paul S Myles & SNAP-, 2020. "Developing and validating subjective and objective risk-assessment measures for predicting mortality after major surgery: An international prospective cohort study," PLOS Medicine, Public Library of Science, vol. 17(10), pages 1-22, October.
    17. François Luthi & Olivier Deriaz & Philippe Vuistiner & Cyrille Burrus & Roger Hilfiker, 2014. "Predicting Non Return to Work after Orthopaedic Trauma: The Wallis Occupational Rehabilitation RisK (WORRK) Model," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    18. Capponi, Giovanna & Martinelli, Arianna & Nuvolari, Alessandro, 2022. "Breakthrough innovations and where to find them," Research Policy, Elsevier, vol. 51(1).
    19. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    20. Thanutorn Wongthida & Lalita Lumkul & Jayanton Patumanond & Wattana Wongtheptian & Dilok Piyayotai & Phichayut Phinyo, 2022. "Development of a Clinical Risk Score for Prediction of Life-Threatening Arrhythmia Events in Patients with ST Elevated Acute Coronary Syndrome after Primary Percutaneous Coronary Intervention," IJERPH, MDPI, vol. 19(4), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0120552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.