IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v184y2021i3p887-903.html
   My bibliography  Save this article

A simple framework to identify optimal cost‐effective risk thresholds for a single screen: Comparison to Decision Curve Analysis

Author

Listed:
  • Hormuzd A. Katki
  • Ionut Bebu

Abstract

Decision curve analysis (DCA) is a popular approach for assessing biomarkers and risk models, but does not require costs and thus cannot identify optimal risk thresholds for actions. Full decision analyses can identify optimal thresholds, but typically used methods are complex and often difficult to understand. We develop a simple framework to calculate the incremental net benefit for a single‐time screen as a function of costs (for tests and treatments) and effectiveness (life‐years gained). We provide simple expressions for the optimal cost‐effective risk threshold and, equally importantly, for the monetary value of life‐years gained associated with the risk threshold. We consider the controversy over the risk threshold to screen women for mutations in BRCA1/2. Importantly, most, and sometimes even all, of the thresholds identified by DCA are infeasible based on their associated dollars per life‐year gained. Our simple framework facilitates sensitivity analyses to cost and effectiveness parameters. The proposed approach estimates optimal risk thresholds in a simple and transparent manner, provides intuition about which quantities are critical, and may serve as a bridge between DCA and a full decision analysis.

Suggested Citation

  • Hormuzd A. Katki & Ionut Bebu, 2021. "A simple framework to identify optimal cost‐effective risk thresholds for a single screen: Comparison to Decision Curve Analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 887-903, July.
  • Handle: RePEc:bla:jorssa:v:184:y:2021:i:3:p:887-903
    DOI: 10.1111/rssa.12680
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12680
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    2. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430, July.
    3. Stuart G. Baker & Nancy R. Cook & Andrew Vickers & Barnett S. Kramer, 2009. "Using relative utility curves to evaluate risk prediction," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 729-748, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tracey L. Marsh & Holly Janes & Margaret S. Pepe, 2020. "Statistical inference for net benefit measures in biomarker validation studies," Biometrics, The International Biometric Society, vol. 76(3), pages 843-852, September.
    2. Stuart G. Baker, 2024. "Evaluating Risk Prediction with Data Collection Costs: Novel Estimation of Test Tradeoff Curves," Medical Decision Making, , vol. 44(1), pages 53-63, January.
    3. Baker Stuart G. & Van Calster Ben & Steyerberg Ewout W., 2012. "Evaluating a New Marker for Risk Prediction Using the Test Tradeoff: An Update," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-37, March.
    4. Ying Huang & Eric Laber, 2016. "Personalized Evaluation of Biomarker Value: A Cost-Benefit Perspective," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 43-65, June.
    5. Noemi Kreif & Richard Grieve & Rosalba Radice & Zia Sadique & Roland Ramsahai & Jasjeet S. Sekhon, 2012. "Methods for Estimating Subgroup Effects in Cost-Effectiveness Analyses That Use Observational Data," Medical Decision Making, , vol. 32(6), pages 750-763, November.
    6. Noémi Kreif & Richard Grieve & M. Zia Sadique, 2013. "Statistical Methods For Cost‐Effectiveness Analyses That Use Observational Data: A Critical Appraisal Tool And Review Of Current Practice," Health Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 486-500, April.
    7. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    8. Qi Cao & Erik Buskens & Hans L. Hillege & Tiny Jaarsma & Maarten Postma & Douwe Postmus, 2019. "Stratified treatment recommendation or one-size-fits-all? A health economic insight based on graphical exploration," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(3), pages 475-482, April.
    9. Abualbishr Alshreef & Allan J. Wailoo & Steven R. Brown & James P. Tiernan & Angus J. M. Watson & Katie Biggs & Mike Bradburn & Daniel Hind, 2017. "Cost-Effectiveness of Haemorrhoidal Artery Ligation versus Rubber Band Ligation for the Treatment of Grade II–III Haemorrhoids: Analysis Using Evidence from the HubBLe Trial," PharmacoEconomics - Open, Springer, vol. 1(3), pages 175-184, September.
    10. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    11. Ben Van Calster & Andrew J. Vickers, 2015. "Calibration of Risk Prediction Models," Medical Decision Making, , vol. 35(2), pages 162-169, February.
    12. Jasjeet Singh Sekhon & Richard D. Grieve, 2012. "A matching method for improving covariate balance in cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 21(6), pages 695-714, June.
    13. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    14. Andrea Manca & Neil Hawkins & Mark J. Sculpher, 2005. "Estimating mean QALYs in trial‐based cost‐effectiveness analysis: the importance of controlling for baseline utility," Health Economics, John Wiley & Sons, Ltd., vol. 14(5), pages 487-496, May.
    15. Konstantina Chalkou & Andrew J. Vickers & Fabio Pellegrini & Andrea Manca & Georgia Salanti, 2023. "Decision Curve Analysis for Personalized Treatment Choice between Multiple Options," Medical Decision Making, , vol. 43(3), pages 337-349, April.
    16. A. Gafni & S. D. Walter & S. Birch & P. Sendi, 2008. "An opportunity cost approach to sample size calculation in cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 17(1), pages 99-107, January.
    17. Richard Grieve & Richard Nixon & Simon G. Thompson & Charles Normand, 2005. "Using multilevel models for assessing the variability of multinational resource use and cost data," Health Economics, John Wiley & Sons, Ltd., vol. 14(2), pages 185-196, February.
    18. Gemma E. Shields & Mark Wilberforce & Paul Clarkson & Tracey Farragher & Arpana Verma & Linda M. Davies, 2022. "Factors Limiting Subgroup Analysis in Cost-Effectiveness Analysis and a Call for Transparency," PharmacoEconomics, Springer, vol. 40(2), pages 149-156, February.
    19. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. John Hutton, 2012. "‘Health Economics’ and the evolution of economic evaluation of health technologies," Health Economics, John Wiley & Sons, Ltd., vol. 21(1), pages 13-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:184:y:2021:i:3:p:887-903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.