IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v43y2023i3p337-349.html
   My bibliography  Save this article

Decision Curve Analysis for Personalized Treatment Choice between Multiple Options

Author

Listed:
  • Konstantina Chalkou

    (Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
    Graduate School for Health Sciences, University of Bern, Switzerland)

  • Andrew J. Vickers

    (Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA)

  • Fabio Pellegrini

    (BDH, Biogen Spain, Madrid, Spain)

  • Andrea Manca

    (Centre for Health Economics, University of York, York, UK)

  • Georgia Salanti

    (Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland)

Abstract

Background Decision curve analysis can be used to determine whether a personalized model for treatment benefit would lead to better clinical decisions. Decision curve analysis methods have been described to estimate treatment benefit using data from a single randomized controlled trial. Objectives Our main objective is to extend the decision curve analysis methodology to the scenario in which several treatment options exist and evidence about their effects comes from a set of trials, synthesized using network meta-analysis (NMA). Methods We describe the steps needed to estimate the net benefit of a prediction model using evidence from studies synthesized in an NMA. We show how to compare personalized versus one-size-fit-all treatment decision-making strategies, such as “treat none†or “treat all patients with a specific treatment†strategies. First, threshold values for each included treatment need to be defined (i.e., the minimum risk difference compared with control that renders a treatment worth taking). The net benefit per strategy can then be plotted for a plausible range of threshold values to reveal the most clinically useful strategy. We applied our methodology to an NMA prediction model for relapsing-remitting multiple sclerosis, which can be used to choose between natalizumab, dimethyl fumarate, glatiramer acetate, and placebo. Results We illustrated the extended decision curve analysis methodology using several threshold value combinations for each available treatment. For the examined threshold values, the “treat patients according to the prediction model†strategy performs either better than or close to the one-size-fit-all treatment strategies. However, even small differences may be important in clinical decision making. As the advantage of the personalized model was not consistent across all thresholds, improving the existing model (by including, for example, predictors that will increase discrimination) is needed before advocating its clinical usefulness. Conclusions This novel extension of decision curve analysis can be applied to NMA-based prediction models to evaluate their use to aid treatment decision making. Highlights Decision curve analysis is extended into a (network) meta-analysis framework. Personalized models predicting treatment benefit are evaluated when several treatment options are available and evidence about their effects comes from a set of trials. Detailed steps to compare personalized versus one-size-fit-all treatment decision-making strategies are outlined. This extension of decision curve analysis can be applied to (network) meta-analysis–based prediction models to evaluate their use to aid treatment decision making.

Suggested Citation

  • Konstantina Chalkou & Andrew J. Vickers & Fabio Pellegrini & Andrea Manca & Georgia Salanti, 2023. "Decision Curve Analysis for Personalized Treatment Choice between Multiple Options," Medical Decision Making, , vol. 43(3), pages 337-349, April.
  • Handle: RePEc:sae:medema:v:43:y:2023:i:3:p:337-349
    DOI: 10.1177/0272989X221143058
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X221143058
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X221143058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Vickers & Elena B. Elkin, 2006. "Decision Curve Analysis: A Novel Method for Evaluating Prediction Models," Medical Decision Making, , vol. 26(6), pages 565-574, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ja Hyeon Ku & Myong Kim & Seok-Soo Byun & Hyeon Jeong & Cheol Kwak & Hyeon Hoe Kim & Sang Eun Lee, 2015. "External Validation of Models for Prediction of Lymph Node Metastasis in Urothelial Carcinoma of the Bladder," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-10, October.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    4. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Anirudh Tomer & Daan Nieboer & Monique J. Roobol & Ewout W. Steyerberg & Dimitris Rizopoulos, 2019. "Personalized schedules for surveillance of low‐risk prostate cancer patients," Biometrics, The International Biometric Society, vol. 75(1), pages 153-162, March.
    6. Bernd Lütkenhöner & Türker Basel, 2013. "Predictive Modeling for Diagnostic Tests with High Specificity, but Low Sensitivity: A Study of the Glycerol Test in Patients with Suspected Menière’s Disease," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-12, November.
    7. Shamil D. Cooray & Lihini A. Wijeyaratne & Georgia Soldatos & John Allotey & Jacqueline A. Boyle & Helena J. Teede, 2020. "The Unrealised Potential for Predicting Pregnancy Complications in Women with Gestational Diabetes: A Systematic Review and Critical Appraisal," IJERPH, MDPI, vol. 17(9), pages 1-20, April.
    8. Minta Thomas & Yu-Ru Su & Elisabeth A. Rosenthal & Lori C. Sakoda & Stephanie L. Schmit & Maria N. Timofeeva & Zhishan Chen & Ceres Fernandez-Rozadilla & Philip J. Law & Neil Murphy & Robert Carreras-, 2023. "Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Khushal Arjan & Lui G Forni & Richard M Venn & David Hunt & Luke Eliot Hodgson, 2021. "Clinical decision-making in older adults following emergency admission to hospital. Derivation and validation of a risk stratification score: OPERA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-12, March.
    10. Alex Thompson & Scott Devine & Mike Kattan & Andrew Muir, 2014. "Prediction of Treatment Week Eight Response & Sustained Virologic Response in Patients Treated with Boceprevir Plus Peginterferon Alfa and Ribavirin," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-8, August.
    11. Christian Bock & Joan Elias Walter & Bastian Rieck & Ivo Strebel & Klara Rumora & Ibrahim Schaefer & Michael J. Zellweger & Karsten Borgwardt & Christian Müller, 2024. "Enhancing the diagnosis of functionally relevant coronary artery disease with machine learning," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Tracey L. Marsh & Holly Janes & Margaret S. Pepe, 2020. "Statistical inference for net benefit measures in biomarker validation studies," Biometrics, The International Biometric Society, vol. 76(3), pages 843-852, September.
    13. Chang Wook Jeong & Sangchul Lee & Jin-Woo Jung & Byung Ki Lee & Seong Jin Jeong & Sung Kyu Hong & Seok-Soo Byun & Sang Eun Lee, 2014. "Mobile Application-Based Seoul National University Prostate Cancer Risk Calculator: Development, Validation, and Comparative Analysis with Two Western Risk Calculators in Korean Men," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-7, April.
    14. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    15. Hormuzd A. Katki & Ionut Bebu, 2021. "A simple framework to identify optimal cost‐effective risk thresholds for a single screen: Comparison to Decision Curve Analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 887-903, July.
    16. Stuart G. Baker, 2024. "Evaluating Risk Prediction with Data Collection Costs: Novel Estimation of Test Tradeoff Curves," Medical Decision Making, , vol. 44(1), pages 53-63, January.
    17. Tae Yoon Lee & Paul Gustafson & Mohsen Sadatsafavi, 2023. "Closed-Form Solution of the Unit Normal Loss Integral in 2 Dimensions, with Application in Value-of-Information Analysis," Medical Decision Making, , vol. 43(5), pages 621-626, July.
    18. Baker Stuart G. & Van Calster Ben & Steyerberg Ewout W., 2012. "Evaluating a New Marker for Risk Prediction Using the Test Tradeoff: An Update," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-37, March.
    19. Ryan W Gan & Diana Sun & Amanda R Tatro & Shirley Cohen-Mekelburg & Wyndy L Wiitala & Ji Zhu & Akbar K Waljee, 2021. "Replicating prediction algorithms for hospitalization and corticosteroid use in patients with inflammatory bowel disease," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-13, September.
    20. Gu Wen & Pepe Margaret, 2009. "Measures to Summarize and Compare the Predictive Capacity of Markers," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-49, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:43:y:2023:i:3:p:337-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.