IDEAS home Printed from https://ideas.repec.org/r/taf/jnlasa/v109y2014i507p1302-1318.html
   My bibliography  Save this item

Martingale Difference Correlation and Its Use in High-Dimensional Variable Screening

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yongshuai Chen & Wenwen Guo & Hengjian Cui, 2024. "On the test of covariance between two high-dimensional random vectors," Statistical Papers, Springer, vol. 65(5), pages 2687-2717, July.
  2. Denuit, Michel & Robert, Christian Y., 2023. "From risk reduction to risk elimination by conditional mean risk sharing of independent losses," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 46-59.
  3. Liu, Jicai & Xu, Peirong & Lian, Heng, 2019. "Estimation for single-index models via martingale difference divergence," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 271-284.
  4. Sang, Yongli & Dang, Xin, 2024. "Grouped feature screening for ultrahigh-dimensional classification via Gini distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 204(C).
  5. Emmanuel Selorm Tsyawo, 2023. "Feasible IV regression without excluded instruments," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 235-256.
  6. Congran Yu & Wenwen Guo & Xinyuan Song & Hengjian Cui, 2023. "Feature screening with latent responses," Biometrics, The International Biometric Society, vol. 79(2), pages 878-890, June.
  7. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
  8. He, Shuaida & Zhang, Jiarui & Chen, Xin, 2025. "Robust direction estimation in single-index models via cumulative divergence," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
  9. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  10. Shang, Du & Shang, Pengjian, 2022. "The dependence measurements based on martingale difference correlation and distance correlation: Efficient tools to distinguish different complex systems," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  11. Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
  12. Craig, Sarah J.C. & Kenney, Ana M. & Lin, Junli & Paul, Ian M. & Birch, Leann L. & Savage, Jennifer S. & Marini, Michele E. & Chiaromonte, Francesca & Reimherr, Matthew L. & Makova, Kateryna D., 2023. "Constructing a polygenic risk score for childhood obesity using functional data analysis," Econometrics and Statistics, Elsevier, vol. 25(C), pages 66-86.
  13. Liu, Jicai & Si, Yuefeng & Niu, Yong & Zhang, Riquan, 2022. "Projection quantile correlation and its use in high-dimensional grouped variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  14. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
  15. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
  16. Su, Liangjun & Zheng, Xin, 2017. "A martingale-difference-divergence-based test for specification," Economics Letters, Elsevier, vol. 156(C), pages 162-167.
  17. Liu, Yu & Qin, Xu & Cai, Zhibo, 2025. "A tree approach for variable selection and its random forest," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
  18. Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei, 2021. "A kernel-based measure for conditional mean dependence," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
  19. Emmanuel Selorm Tsyawo & Abdul-Nasah Soale, 2021. "A Distance Covariance-based Estimator," Papers 2102.07008, arXiv.org, revised Sep 2024.
  20. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.
  21. Carlos Velasco & Xuexin Wang, 2021. "Instrumental variable estimation via a continuum of instruments with an application to estimating the elasticity of intertemporal substitution in consumption," Working Papers 2024-09-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
  22. Xu, Kai & Zhou, Yeqing, 2021. "Projection-averaging-based cumulative covariance and its use in goodness-of-fit testing for single-index models," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
  23. Xi Wu & Shifeng Xiong & Weiyan Mu, 2023. "An Ensemble Method for Feature Screening," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
  24. Tianqing Liu & Danning Li & Fengjiao Ren & Jianguo Sun & Xiaohui Yuan, 2024. "A new sufficient dimension reduction method via rank divergence," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 921-950, September.
  25. Xiaolin Chen & Xiaojing Chen & Yi Liu, 2019. "A note on quantile feature screening via distance correlation," Statistical Papers, Springer, vol. 60(5), pages 1741-1762, October.
  26. Emmanuel Jordy Menvouta & Sven Serneels & Tim Verdonck, 2022. "Sparse dimension reduction based on energy and ball statistics," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 951-975, December.
  27. Jin, Ze & Matteson, David S., 2018. "Generalizing distance covariance to measure and test multivariate mutual dependence via complete and incomplete V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 304-322.
  28. Zhu, Ke, 2023. "A new generalized exponentially weighted moving average quantile model and its statistical inference," Journal of Econometrics, Elsevier, vol. 237(1).
  29. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
  30. Luca Mattia Rolla & Alessandro Giovannelli, 2022. "The Forecasting performance of the Factor model with Martingale Difference errors," Papers 2205.10256, arXiv.org, revised Jun 2023.
  31. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
  32. Lee, Chung Eun & Zhang, Xin, 2024. "Conditional mean dimension reduction for tensor time series," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  33. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
  34. Li, Lu & Ke, Chenlu & Yin, Xiangrong & Yu, Zhou, 2023. "Generalized martingale difference divergence: Detecting conditional mean independence with applications in variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.