IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.09621.html
   My bibliography  Save this paper

Feasible IV Regression without Excluded Instruments

Author

Listed:
  • Emmanuel Selorm Tsyawo

Abstract

The relevance condition of Integrated Conditional Moment (ICM) estimators is significantly weaker than the conventional IV's in at least two respects: (1) consistent estimation without excluded instruments is possible, provided endogenous covariates are non-linearly mean-dependent on exogenous covariates, and (2) endogenous covariates may be uncorrelated with but mean-dependent on instruments. These remarkable properties notwithstanding, multiplicative-kernel ICM estimators suffer diminished identification strength, large bias, and severe size distortions even for a moderately sized instrument vector. This paper proposes a computationally fast linear ICM estimator that better preserves identification strength in the presence of multiple instruments and a test of the ICM relevance condition. Monte Carlo simulations demonstrate a considerably better size control in the presence of multiple instruments and a favourably competitive performance in general. An empirical example illustrates the practical usefulness of the estimator, where estimates remain plausible when no excluded instrument is used.

Suggested Citation

  • Emmanuel Selorm Tsyawo, 2021. "Feasible IV Regression without Excluded Instruments," Papers 2103.09621, arXiv.org, revised Nov 2022.
  • Handle: RePEc:arx:papers:2103.09621
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.09621
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    2. Alan Sule & Honoré Bo E. & Hu Luojia & Leth-Petersen Søren, 2014. "Estimation of Panel Data Regression Models with Two-Sided Censoring or Truncation," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 1-20, January.
    3. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    4. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    5. Emmanuel Selorm Tsyawo & Abdul-Nasah Soale, 2021. "A Distance Covariance-based Estimator," Papers 2102.07008, arXiv.org, revised Sep 2024.
    6. Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
    7. Chung Eun Lee & Xiaofeng Shao, 2018. "Martingale Difference Divergence Matrix and Its Application to Dimension Reduction for Stationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 216-229, January.
    8. Xiaofeng Shao & Jingsi Zhang, 2014. "Martingale Difference Correlation and Its Use in High-Dimensional Variable Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1302-1318, September.
    9. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    10. Dominic Edelmann & Konstantinos Fokianos & Maria Pitsillou, 2019. "An Updated Literature Review of Distance Correlation and Its Applications to Time Series," International Statistical Review, International Statistical Institute, vol. 87(2), pages 237-262, August.
    11. Dieterle, Steven G. & Snell, Andy, 2016. "A simple diagnostic to investigate instrument validity and heterogeneous effects when using a single instrument," Labour Economics, Elsevier, vol. 42(C), pages 76-86.
    12. Erik Hornung, 2014. "Immigration and the Diffusion of Technology: The Huguenot Diaspora in Prussia," American Economic Review, American Economic Association, vol. 104(1), pages 84-122, January.
    13. Honore, Bo E. & Powell, James L., 1994. "Pairwise difference estimators of censored and truncated regression models," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 241-278.
    14. Su, Liangjun & Zheng, Xin, 2017. "A martingale-difference-divergence-based test for specification," Economics Letters, Elsevier, vol. 156(C), pages 162-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    2. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
    3. Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    4. Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei, 2021. "A kernel-based measure for conditional mean dependence," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    5. Dakyung Seong, 2022. "Binary response model with many weak instruments," Papers 2201.04811, arXiv.org, revised Jun 2024.
    6. Emmanuel Selorm Tsyawo & Abdul-Nasah Soale, 2021. "A Distance Covariance-based Estimator," Papers 2102.07008, arXiv.org, revised Sep 2024.
    7. Jiafeng Chen & Daniel L. Chen & Greg Lewis, 2020. "Mostly Harmless Machine Learning: Learning Optimal Instruments in Linear IV Models," Papers 2011.06158, arXiv.org, revised Jun 2021.
    8. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Peppel-Srebrny, Jemima, 2021. "Not all government budget deficits are created equal: Evidence from advanced economies' sovereign bond markets," Journal of International Money and Finance, Elsevier, vol. 118(C).
    10. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    11. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    12. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    13. Charlier, Erwin & Melenberg, Bertrand & van Soest, Arthur, 2000. "Estimation of a censored regression panel data model using conditional moment restrictions efficiently," Journal of Econometrics, Elsevier, vol. 95(1), pages 25-56, March.
    14. Juergen Bitzer & Erkan Goeren, 2018. "Foreign Aid and Subnational Development: A Grid Cell Analysis," Working Papers V-407-18, University of Oldenburg, Department of Economics, revised Mar 2018.
    15. Justus Haucap & Johannes Muck, 2015. "What drives the relevance and reputation of economics journals? An update from a survey among economists," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(3), pages 849-877, June.
    16. Costa-Font, Joan & Jiménez-Martín, Sergi & Vilaplana-Prieto, Cristina, 2022. "Do Public Caregiving Subsidies and Supports affect the Provision of Care and Transfers?," Journal of Health Economics, Elsevier, vol. 84(C).
    17. Fabian Gaessler & Stefan Wagner, 2022. "Patents, Data Exclusivity, and the Development of New Drugs," The Review of Economics and Statistics, MIT Press, vol. 104(3), pages 571-586, May.
    18. Goetzke, Frank & Vance, Colin, 2018. "Is gasoline price elasticity in the United States increasing? Evidence from the 2009 and 2017 national household travel surveys," Ruhr Economic Papers 765, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    19. Temple, Jonathan & Van de Sijpe, Nicolas, 2017. "Foreign aid and domestic absorption," Journal of International Economics, Elsevier, vol. 108(C), pages 431-443.
    20. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.09621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.