IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v160y2021ics0167947321000803.html
   My bibliography  Save this article

A kernel-based measure for conditional mean dependence

Author

Listed:
  • Lai, Tingyu
  • Zhang, Zhongzhan
  • Wang, Yafei

Abstract

A novel metric, called kernel-based conditional mean dependence (KCMD), is proposed to measure and test the departure from conditional mean independence between a response variable Y and a predictor variable X, based on the reproducing kernel embedding and the Hilbert-Schmidt norm of a tensor operator. The KCMD has several appealing merits. It equals zero if and only if the conditional mean of Y given X is independent of X, i.e. E(Y|X)=E(Y) almost surely, provided that the employed kernel is characteristic; it can be used to detect all kinds of conditional mean dependence with an appropriate choice of kernel; it has a simple expectation form and allows an unbiased empirical estimator. A class of test statistics based on the estimated KCMD is constructed, and a wild bootstrap test procedure to the conditional mean independence is presented. The limit distributions of the test statistics and the bootstrapped statistics under null hypothesis, fixed alternative hypothesis and local alternative hypothesis are given respectively, and a data-driven procedure to choose a suitable kernel is suggested. Simulation studies indicate that the tests based on the KCMD have close powers to the tests based on martingale difference divergence in monotone dependence, but excel in the cases of nonlinear relationships or the moment restriction on X is violated. Two real data examples are presented for the illustration of the proposed method.

Suggested Citation

  • Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei, 2021. "A kernel-based measure for conditional mean dependence," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:csdana:v:160:y:2021:i:c:s0167947321000803
    DOI: 10.1016/j.csda.2021.107246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321000803
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C E Lee & X Zhang & X Shao, 2020. "Testing conditional mean independence for functional data," Biometrika, Biometrika Trust, vol. 107(2), pages 331-346.
    2. Chung Eun Lee & Xiaofeng Shao, 2018. "Martingale Difference Divergence Matrix and Its Application to Dimension Reduction for Stationary Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 216-229, January.
    3. Cencheng Shen & Carey E. Priebe & Joshua T. Vogelstein, 2020. "From Distance Correlation to Multiscale Graph Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 280-291, January.
    4. Fang Yao & Hans-Georg Müller, 2010. "Functional quadratic regression," Biometrika, Biometrika Trust, vol. 97(1), pages 49-64.
    5. Valentin Patilea & César Sánchez-Sellero & Matthieu Saumard, 2016. "Testing the Predictor Effect on a Functional Response," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1684-1695, October.
    6. Niklas Pfister & Peter Bühlmann & Bernhard Schölkopf & Jonas Peters, 2018. "Kernel‐based tests for joint independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 5-31, January.
    7. Liu, Jicai & Xu, Peirong & Lian, Heng, 2019. "Estimation for single-index models via martingale difference divergence," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 271-284.
    8. Xiaofeng Shao & Jingsi Zhang, 2014. "Martingale Difference Correlation and Its Use in High-Dimensional Variable Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1302-1318, September.
    9. Jing Lei, 2014. "Adaptive Global Testing for Functional Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 624-634, June.
    10. Su, Liangjun & Zheng, Xin, 2017. "A martingale-difference-divergence-based test for specification," Economics Letters, Elsevier, vol. 156(C), pages 162-167.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Selorm Tsyawo, 2023. "Feasible IV regression without excluded instruments," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 235-256.
    2. Li, Lu & Ke, Chenlu & Yin, Xiangrong & Yu, Zhou, 2023. "Generalized martingale difference divergence: Detecting conditional mean independence with applications in variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
    3. Eduardo García‐Portugués & Javier Álvarez‐Liébana & Gonzalo Álvarez‐Pérez & Wenceslao González‐Manteiga, 2021. "A goodness‐of‐fit test for the functional linear model with functional response," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 502-528, June.
    4. Lai, Tingyu & Zhang, Zhongzhan & Wang, Yafei & Kong, Linglong, 2021. "Testing independence of functional variables by angle covariance," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    5. Emmanuel Selorm Tsyawo & Abdul-Nasah Soale, 2021. "A Distance Covariance-based Estimator," Papers 2102.07008, arXiv.org, revised Sep 2024.
    6. Luca Mattia Rolla & Alessandro Giovannelli, 2022. "The Forecasting performance of the Factor model with Martingale Difference errors," Papers 2205.10256, arXiv.org, revised Jun 2023.
    7. Liu, Jicai & Xu, Peirong & Lian, Heng, 2019. "Estimation for single-index models via martingale difference divergence," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 271-284.
    8. Shang, Du & Shang, Pengjian, 2022. "The dependence measurements based on martingale difference correlation and distance correlation: Efficient tools to distinguish different complex systems," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    9. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.
    10. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    11. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    12. Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
    13. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Chenlin Zhang & Huazhen Lin & Li Liu & Jin Liu & Yi Li, 2023. "Functional data analysis with covariate‐dependent mean and covariance structures," Biometrics, The International Biometric Society, vol. 79(3), pages 2232-2245, September.
    15. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    16. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
    17. Congran Yu & Wenwen Guo & Xinyuan Song & Hengjian Cui, 2023. "Feature screening with latent responses," Biometrics, The International Biometric Society, vol. 79(2), pages 878-890, June.
    18. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    19. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
    20. Tingting Huang & Gilbert Saporta & Huiwen Wang & Shanshan Wang, 2021. "A robust spatial autoregressive scalar-on-function regression with t-distribution," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 57-81, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:160:y:2021:i:c:s0167947321000803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.