IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v202y2025ics016794732400152x.html
   My bibliography  Save this article

A tree approach for variable selection and its random forest

Author

Listed:
  • Liu, Yu
  • Qin, Xu
  • Cai, Zhibo

Abstract

The Sure Independence Screening (SIS) provides a fast and efficient ranking for the importance of variables for ultra-high dimensional regressions. However, classical SIS cannot eliminate false importance in the ranking, which is exacerbated in nonparametric settings. To address this problem, a novel screening approach is proposed by partitioning the sample into subsets sequentially and creating a tree-like structure of sub-samples called SIS-tree. SIS-tree is straightforward to implement and can be integrated with various measures of dependence. Theoretical results are established to support this approach, including its “sure screening property”. Additionally, SIS-tree is extended to a forest with improved performance. Through simulations, the proposed methods are demonstrated to have great improvement comparing with existing SIS methods. The selection of a cutoff for the screening is also investigated through theoretical justification and experimental study. As a direct application, classifications of high-dimensional data are considered, and it is found that the screening and cutoff can substantially improve the performance of existing classifiers. The proposed approaches can be implemented using R package “SIStree” at https://github.com/liuyu-star/SIStree.

Suggested Citation

  • Liu, Yu & Qin, Xu & Cai, Zhibo, 2025. "A tree approach for variable selection and its random forest," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:csdana:v:202:y:2025:i:c:s016794732400152x
    DOI: 10.1016/j.csda.2024.108068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732400152X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:202:y:2025:i:c:s016794732400152x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.