IDEAS home Printed from https://ideas.repec.org/r/taf/jnlasa/v108y2013i503p1120-1131.html
   My bibliography  Save this item

Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Vitor Possebom, 2019. "Sharp Bounds for the Marginal Treatment Effect with Sample Selection," Papers 1904.08522, arXiv.org.
  2. Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
  3. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
  4. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
  5. Zhichao Jiang & Peng Ding & Zhi Geng, 2016. "Principal causal effect identification and surrogate end point evaluation by multiple trials," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(4), pages 829-848, September.
  6. Eduardo Fé, 2021. "Pension eligibility rules and the local causal effect of retirement on cognitive functioning," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 812-841, July.
  7. Martin Huber, 2015. "Testing the Validity of the Sibling Sex Ratio Instrument," LABOUR, CEIS, vol. 29(1), pages 1-14, March.
  8. Didier Nibbering & Matthijs Oosterveen, 2023. "Instrument-based estimation of full treatment effects with movers," Papers 2306.07018, arXiv.org.
  9. Lupparelli, Monia & Mattei, Alessandra, 2020. "Joint and marginal causal effects for binary non-independent outcomes," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
  10. Bia, Michela & Flores-Lagunes, Alfonso & Mercatanti, Andrea, 2018. "Evaluation of Language Training Programs in Luxembourg using Principal Stratification," GLO Discussion Paper Series 289, Global Labor Organization (GLO).
  11. Zhichao Jiang & Shu Yang & Peng Ding, 2022. "Multiply robust estimation of causal effects under principal ignorability," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1423-1445, September.
  12. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
  13. Yuta Ota & Takahiro Hoshino & Taisuke Otsu, 2024. "Causal Inference With Auxiliary Observations," Keio-IES Discussion Paper Series 2024-022, Institute for Economics Studies, Keio University.
  14. Avi Feller & Fabrizia Mealli & Luke Miratrix, 2017. "Principal Score Methods: Assumptions, Extensions, and Practical Considerations," Journal of Educational and Behavioral Statistics, , vol. 42(6), pages 726-758, December.
  15. Silvia Noirjean & Mario Biggeri & Laura Forastiere & Fabrizia Mealli & Maria Nannini, 2023. "Estimating causal effects of community health financing via principal stratification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1317-1350, October.
  16. Huber, Martin, 2014. "Sensitivity checks for the local average treatment effect," Economics Letters, Elsevier, vol. 123(2), pages 220-223.
  17. Rui Wang, 2023. "Point Identification of LATE with Two Imperfect Instruments," Papers 2303.13795, arXiv.org.
  18. Fan Yang & Peng Ding, 2018. "Using survival information in truncation by death problems without the monotonicity assumption," Biometrics, The International Biometric Society, vol. 74(4), pages 1232-1239, December.
  19. Chanmin Kim & Lucas R. F. Henneman & Christine Choirat & Corwin M. Zigler, 2020. "Health effects of power plant emissions through ambient air quality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1677-1703, October.
  20. Christophe Bruneel-Zupanc & Jad Beyhum, 2024. "Identification with possibly invalid IVs," Papers 2401.03990, arXiv.org, revised Oct 2024.
  21. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
  22. Peng Ding & Jiannan Lu, 2017. "Principal stratification analysis using principal scores," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 757-777, June.
  23. Fan Yang & Dylan S. Small, 2016. "Using post-outcome measurement information in censoring-by-death problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 299-318, January.
  24. Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
  25. Hyunseung Kang & Anru Zhang & T. Tony Cai & Dylan S. Small, 2016. "Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 132-144, March.
  26. Glynn, Adam & Rueda, miguel & Schuessler, Julian, 2023. "Post-Instrument Bias in Linear Models," SocArXiv axn4t, Center for Open Science.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.