Joint and marginal causal effects for binary non-independent outcomes
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2020.104609
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fabrizia Mealli & Barbara Pacini & Elena Stanghellini, 2016. "Identification of Principal Causal Effects Using Additional Outcomes in Concentration Graphs," Journal of Educational and Behavioral Statistics, , vol. 41(5), pages 463-480, October.
- Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
- Monia Lupparelli & Alberto Roverato, 2017. "Log-mean linear regression models for binary responses with an application to multimorbidity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 227-252, February.
- Sally W. Thurston & David Ruppert & Philip W. Davidson, 2009. "Bayesian Models for Multiple Outcomes Nested in Domains," Biometrics, The International Biometric Society, vol. 65(4), pages 1078-1086, December.
- A. Roverato & M. Lupparelli & L. La Rocca, 2013. "Log-mean linear models for binary data," Biometrika, Biometrika Trust, vol. 100(2), pages 485-494.
- Xihong Lin & Louise Ryan & Mary Sammel & Daowen Zhang & Chantana Padungtod & Xiping Xu, 2000. "A Scaled Linear Mixed Model for Multiple Outcomes," Biometrics, The International Biometric Society, vol. 56(2), pages 593-601, June.
- Fabrizia Mealli & Barbara Pacini, 2013. "Using Secondary Outcomes to Sharpen Inference in Randomized Experiments With Noncompliance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1120-1131, September.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Federica Licari & Alessandra Mattei, 2020. "Assessing causal effects of extra compulsory learning on college students’ academic performances," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1595-1614, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Mercatanti & Fan Li, 2017. "Do debit cards decrease cash demand?: causal inference and sensitivity analysis using principal stratification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 759-776, August.
- Avi Feller & Fabrizia Mealli & Luke Miratrix, 2017. "Principal Score Methods: Assumptions, Extensions, and Practical Considerations," Journal of Educational and Behavioral Statistics, , vol. 42(6), pages 726-758, December.
- Zach Branson & Tirthankar Dasgupta, 2020. "Sampling‐based Randomised Designs for Causal Inference under the Potential Outcomes Framework," International Statistical Review, International Statistical Institute, vol. 88(1), pages 101-121, April.
- Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
- Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
- Clément de Chaisemartin, 2022.
"Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect,"
Working Papers
hal-03873919, HAL.
- Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," SciencePo Working papers Main hal-03873919, HAL.
- Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," NBER Working Papers 29879, National Bureau of Economic Research, Inc.
- Florian Gunsilius & Yuliang Xu, 2021. "Matching for causal effects via multimarginal unbalanced optimal transport," Papers 2112.04398, arXiv.org, revised Jul 2022.
- Huber Martin & Wüthrich Kaspar, 2019.
"Local Average and Quantile Treatment Effects Under Endogeneity: A Review,"
Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
- Huber, Martin & Wüthrich, Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," University of California at San Diego, Economics Working Paper Series qt4j29d8sc, Department of Economics, UC San Diego.
- Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
- Özler, Berk & Çelik, Çiğdem & Cunningham, Scott & Cuevas, P. Facundo & Parisotto, Luca, 2021.
"Children on the move: Progressive redistribution of humanitarian cash transfers among refugees,"
Journal of Development Economics, Elsevier, vol. 153(C).
- Ozler,Berk & Celik,Cigdem & Cunningham,Scott & Cuevas,Pablo Facundo & Parisotto,Luca, 2020. "Children on the Move : Progressive Redistribution of Humanitarian Cash Transfers among Refugees," Policy Research Working Paper Series 9471, The World Bank.
- Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
- Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
- Sun, Shanxia & Delgado, Michael & Khanna, Neha, 2017. "Hybrid Vehicles and Household Driving Behavior: Implications for Miles Traveled and Gasoline Consumption," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258502, Agricultural and Applied Economics Association.
- Guido W. Imbens, 2020.
"Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics,"
Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
- Guido Imbens, 2019. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," NBER Working Papers 26104, National Bureau of Economic Research, Inc.
- Peter Z. Schochet, 2018. "Design-Based Estimators for Average Treatment Effects for Multi-Armed RCTs," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 568-593, October.
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
- Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
- Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020.
"Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed,"
Labour Economics, Elsevier, vol. 65(C).
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany’s programmes for long term unemployed," Economics Working Paper Series 1910, University of St. Gallen, School of Economics and Political Science.
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? : The case of Germany's programmes for long term unemployed," IAB-Discussion Paper 202005, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2019. "Does the Estimation of the Propensity Score by Machine Learning Improve Matching Estimation? The Case of Germany's Programmes for Long Term Unemployed," IZA Discussion Papers 12526, Institute of Labor Economics (IZA).
- Raffaele Guetto & Valentina Tocchioni & Daniele Vignoli, 2023. "The Causal Impact of Temporary Employment on First Births in Italy: An Update," Econometrics Working Papers Archive 2023_06, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
More about this item
Keywords
Causal relative risks; Log-mean linear models; Potential outcomes; Product outcomes; Rubin Causal Model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:178:y:2020:i:c:s0047259x19304282. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.