IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v88y2011i3d10.1007_s11192-011-0420-z.html
   My bibliography  Save this item

SAO network analysis of patents for technology trends identification: a case study of polymer electrolyte membrane technology in proton exchange membrane fuel cells

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jose M. Vicente-Gomila & Anna Palli & Begoña Calle & Miguel A. Artacho & Sara Jimenez, 2017. "Discovering shifts in competitive strategies in probiotics, accelerated with TechMining," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1907-1923, June.
  2. Yang, Chao & Huang, Cui & Su, Jun, 2018. "An improved SAO network-based method for technology trend analysis: A case study of graphene," Journal of Informetrics, Elsevier, vol. 12(1), pages 271-286.
  3. Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  4. Ansgar Moeller & Martin G. Moehrle, 2015. "Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 77-96, January.
  5. Yi Zhang & Xiao Zhou & Alan L. Porter & Jose M. Vicente Gomila, 2014. "How to combine term clumping and technology roadmapping for newly emerging science & technology competitive intelligence: “problem & solution” pattern based semantic TRIZ tool and case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 101(2), pages 1375-1389, November.
  6. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
  7. Irene Campos‐García & Sara Alonso‐Muñoz & Rocío González‐Sánchez & María‐Sonia Medina‐Salgado, 2024. "Human resource management and sustainability: Bridging the 2030 agenda," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 2033-2053, May.
  8. Yoon, Janghyeok & Park, Hyunseok & Seo, Wonchul & Lee, Jae-Min & Coh, Byoung-youl & Kim, Jonghwa, 2015. "Technology opportunity discovery (TOD) from existing technologies and products: A function-based TOD framework," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 153-167.
  9. Chao Yang & Donghua Zhu & Xuefeng Wang & Yi Zhang & Guangquan Zhang & Jie Lu, 2017. "Requirement-oriented core technological components’ identification based on SAO analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(3), pages 1229-1248, September.
  10. Janghyeok Yoon & Hyunseok Park & Kwangsoo Kim, 2013. "Identifying technological competition trends for R&D planning using dynamic patent maps: SAO-based content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(1), pages 313-331, January.
  11. Wooseok Jang & Yongtae Park & Hyeonju Seol, 2021. "Identifying emerging technologies using expert opinions on the future: A topic modeling and fuzzy clustering approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6505-6532, August.
  12. Saritas, Ozcan & Burmaoglu, Serhat, 2016. "Future of sustainable military operations under emerging energy and security considerations," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 331-343.
  13. Teng, Hao & Wang, Nan & Zhao, Hongyu & Hu, Yingtong & Jin, Haitao, 2024. "Enhancing semantic text similarity with functional semantic knowledge (FOP) in patents," Journal of Informetrics, Elsevier, vol. 18(1).
  14. An, Jaehyeong & Kim, Kyuwoong & Mortara, Letizia & Lee, Sungjoo, 2018. "Deriving technology intelligence from patents: Preposition-based semantic analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 217-236.
  15. Richarz, Jan & Wegewitz, Stephan & Henn, Sarah & Müller, Dirk, 2023. "Graph-based research field analysis by the use of natural language processing: An overview of German energy research," Technological Forecasting and Social Change, Elsevier, vol. 186(PB).
  16. Jing Ma & Alan L. Porter, 2015. "Analyzing patent topical information to identify technology pathways and potential opportunities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 811-827, January.
  17. Jose M. Vicente-Gomila, 2014. "The contribution of syntactic–semantic approach to the search for complementary literatures for scientific or technical discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(3), pages 659-673, September.
  18. Jan M. Gerken & Martin G. Moehrle, 2012. "A new instrument for technology monitoring: novelty in patents measured by semantic patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 645-670, June.
  19. Zhang, Yi & Zhang, Guangquan & Chen, Hongshu & Porter, Alan L. & Zhu, Donghua & Lu, Jie, 2016. "Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 179-191.
  20. Yongho Lee & So Young Kim & Inseok Song & Yongtae Park & Juneseuk Shin, 2014. "Technology opportunity identification customized to the technological capability of SMEs through two-stage patent analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 100(1), pages 227-244, July.
  21. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
  22. Yi Zhang & Yue Qian & Ying Huang & Ying Guo & Guangquan Zhang & Jie Lu, 2017. "An entropy-based indicator system for measuring the potential of patents in technological innovation: rejecting moderation," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1925-1946, June.
  23. Xuan Shi & Lingfei Cai & Hongfang Song, 2019. "Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
  24. Farshad Madani, 2015. "‘Technology Mining’ bibliometrics analysis: applying network analysis and cluster analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 323-335, October.
  25. Xuandi Gong & Jinluan Ren & Xinyan Wang & Li Zeng, 2022. "Technical Trends and Competitive Situation in Respect of Metahuman—From Product Modules and Technical Topics to Patent Data," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
  26. Roman Jurowetzki, 2015. "Unpacking Big Systems - Natural Language Processing meets Network Analysis. A Study of Smart Grid Development in Denmark," SPRU Working Paper Series 2015-15, SPRU - Science Policy Research Unit, University of Sussex Business School.
  27. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
  28. Byunghoon Kim & Gianluca Gazzola & Jae-Min Lee & Dohyun Kim & Kanghoe Kim & Myong K. Jeong, 2014. "Inter-cluster connectivity analysis for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1811-1825, March.
  29. Xiao Zhou & Lu Huang & Yi Zhang & Miaomiao Yu, 2019. "A hybrid approach to detecting technological recombination based on text mining and patent network analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 699-737, November.
  30. Gaizka Garechana & Rosa Río-Belver & Enara Zarrabeitia & Izaskun Alvarez-Meaza, 2022. "TeknoAssistant : a domain specific tech mining approach for technical problem-solving support," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5459-5473, September.
  31. Byunghoon Kim & Gianluca Gazzola & Jaekyung Yang & Jae-Min Lee & Byoung-Youl Coh & Myong K. Jeong & Young-Seon Jeong, 2017. "Two-phase edge outlier detection method for technology opportunity discovery," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 1-16, October.
  32. Guo, Junfang & Wang, Xuefeng & Li, Qianrui & Zhu, Donghua, 2016. "Subject–action–object-based morphology analysis for determining the direction of technological change," Technological Forecasting and Social Change, Elsevier, vol. 105(C), pages 27-40.
  33. Hofmann, Peter & Keller, Robert & Urbach, Nils, 2019. "Inter-technology relationship networks: Arranging technologies through text mining," Technological Forecasting and Social Change, Elsevier, vol. 143(C), pages 202-213.
  34. Jason Jihoon Ree & Cheolhyun Jeong & Hyunseok Park & Kwangsoo Kim, 2019. "Context–Problem Network and Quantitative Method of Patent Analysis: A Case Study of Wireless Energy Transmission Technology," Sustainability, MDPI, vol. 11(5), pages 1-18, March.
  35. Christian Mühlroth & Michael Grottke, 2018. "A systematic literature review of mining weak signals and trends for corporate foresight," Journal of Business Economics, Springer, vol. 88(5), pages 643-687, July.
  36. Joung, Junegak & Kim, Kwangsoo, 2017. "Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 281-292.
  37. Han, Xiaotong & Zhu, Donghua & Lei, Ming & Daim, Tugrul, 2021. "R&D trend analysis based on patent mining: An integrated use of patent applications and invalidation data," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
  38. Li, Xin & Wu, Yundi & Cheng, Haolun & Xie, Qianqian & Daim, Tugrul, 2023. "Identifying technology opportunity using SAO semantic mining and outlier detection method: A case of triboelectric nanogenerator technology," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.