IDEAS home Printed from https://ideas.repec.org/r/sce/scecf6/_049.html
   My bibliography  Save this item

A Mixed Poisson Regression Model for Analysis of Patent Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Herriges, Joseph A. & Phaneuf, Daniel J. & Tobias, Justin L., 2008. "Estimating demand systems when outcomes are correlated counts," Journal of Econometrics, Elsevier, vol. 147(2), pages 282-298, December.
  2. Keefe Murphy & Thomas Brendan Murphy, 2020. "Gaussian parsimonious clustering models with covariates and a noise component," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 293-325, June.
  3. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
  4. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
  5. Teresa Bago d'Uva, 2005. "Latent class models for use of primary care: evidence from a British panel," Health Economics, John Wiley & Sons, Ltd., vol. 14(9), pages 873-892, September.
  6. Hynes, Stephen & Greene, William, 2011. "Estimating recreation demand with on-site panel data: An application of a latent class truncated and endogenously stratified count data model," Working Papers 148925, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
  7. Conway, Karen Smith & Deb, Partha, 2005. "Is prenatal care really ineffective? Or, is the 'devil' in the distribution?," Journal of Health Economics, Elsevier, vol. 24(3), pages 489-513, May.
  8. Lim, Hwa Kyung & Li, Wai Keung & Yu, Philip L.H., 2014. "Zero-inflated Poisson regression mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 151-158.
  9. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
  10. Bago d'Uva, Teresa & Jones, Andrew M. & van Doorslaer, Eddy, 2009. "Measurement of horizontal inequity in health care utilisation using European panel data," Journal of Health Economics, Elsevier, vol. 28(2), pages 280-289, March.
  11. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
  12. Brutscher, P., 2012. "Self-Disconnection Among Pre-Payment Customers - A Behavioural Analysis," Cambridge Working Papers in Economics 1214, Faculty of Economics, University of Cambridge.
  13. Dimitris Karlis & Purushottam Papatla & Sudipt Roy, 2016. "Finite mixtures of censored Poisson regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 100-122, May.
  14. Canan GÜNEŞ & Mustafa ÜNLÜ & Yasin BÜYÜKKÖR & Şenay ÜÇDOĞRUK BİRECİKLİ, 2016. "Türkiye’de Sağlık Hizmetleri Talebinin Sayma Veri Modelleriyle İncelenmesi: İçsellik Sorunu," Sosyoekonomi Journal, Sosyoekonomi Society, issue 24(30).
  15. Shiferaw Gurmu & Fidel Pérez-Sebastián, 2008. "Patents, R&D and lag effects: evidence from flexible methods for count panel data on manufacturing firms," Empirical Economics, Springer, vol. 35(3), pages 507-526, November.
  16. William Greene, 2004. "Convenient estimators for the panel probit model: Further results," Empirical Economics, Springer, vol. 29(1), pages 21-47, January.
  17. Partha Deb & William T. Gallo & Padmaja Ayyagari & Jason M. Fletcher & Jody L. Sindelar, 2009. "Job Loss: Eat, drink and try to be merry?," NBER Working Papers 15122, National Bureau of Economic Research, Inc.
  18. Greene, William, 2008. "Functional forms for the negative binomial model for count data," Economics Letters, Elsevier, vol. 99(3), pages 585-590, June.
  19. William Greene, 2007. "Correlation in Bivariate Poisson Regression Model," Working Papers 07-14, New York University, Leonard N. Stern School of Business, Department of Economics.
  20. Stephen Hynes & William Greene, 2013. "A Panel Travel Cost Model Accounting for Endogenous Stratification and Truncation: A Latent Class Approach," Land Economics, University of Wisconsin Press, vol. 89(1), pages 177-192.
  21. Peiming Wang & Martin Puterman, 1999. "Markov Poisson regression models for discrete time series. Part 1: Methodology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(7), pages 855-869.
  22. Vincenzo Atella & Francesco Brindisi & Partha Deb & Furio C. Rosati, 2004. "Determinants of access to physician services in Italy: a latent class seemingly unrelated probit approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(7), pages 657-668, July.
  23. Chadha, Alka, 2009. "TRIPs and patenting activity: Evidence from the Indian pharmaceutical industry," Economic Modelling, Elsevier, vol. 26(2), pages 499-505, March.
  24. Greene, W., 2001. "Fixed and Random Effects in Nonlinear Models," New York University, Leonard N. Stern School Finance Department Working Paper Seires 01-01, New York University, Leonard N. Stern School of Business-.
  25. Stephen Hynes & William Greene, 2016. "Preference Heterogeneity in Contingent Behaviour Travel Cost Models with On-site Samples: A Random Parameter vs. a Latent Class Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 348-367, June.
  26. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.
  27. Dalrymple, M. L. & Hudson, I. L. & Ford, R. P. K., 2003. "Finite Mixture, Zero-inflated Poisson and Hurdle models with application to SIDS," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 491-504, January.
  28. Óscar Lourenço & Carlota Quintal & Pedro Lopes Ferreira & Pedro Pita Barros, 2007. "A equidade na utilização de cuidados de saúde em Portugal: Uma avaliação baseada em modelos de contagem," Notas Económicas, Faculty of Economics, University of Coimbra, issue 25, pages 6-26, June.
  29. Deb, Partha & Gallo, William T. & Ayyagari, Padmaja & Fletcher, Jason M. & Sindelar, Jody L., 2011. "The effect of job loss on overweight and drinking," Journal of Health Economics, Elsevier, vol. 30(2), pages 317-327, March.
  30. Leila Tahmooresnejad & Catherine Beaudry & Andrea Schiffauerova, 2015. "The role of public funding in nanotechnology scientific production: Where Canada stands in comparison to the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 753-787, January.
  31. Youssef, Ahmed H. & Abonazel, Mohamed R. & Ahmed, Elsayed G., 2020. "Estimating the Number of Patents in the World Using Count Panel Data Models," MPRA Paper 100749, University Library of Munich, Germany, revised 19 Mar 2020.
  32. repec:jss:jstsof:14:i10 is not listed on IDEAS
  33. Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
  34. William Greene, 2009. "Models for count data with endogenous participation," Empirical Economics, Springer, vol. 36(1), pages 133-173, February.
  35. Deb, Partha & TRIVEDI, PRAVIN K, 1998. "Moment-based Estimation of Latent Class Models of Event Counts," University of California at San Diego, Economics Working Paper Series qt6r282286, Department of Economics, UC San Diego.
  36. Padmaja Ayyagari & Partha Deb & Jason Fletcher & William Gallo & Jody L. Sindelar, 2013. "Understanding Heterogeneity In Price Elasticities In The Demand For Alcohol For Older Individuals," Health Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 89-105, January.
  37. Park, Jeong-gun & Basawa, I. V., 2002. "Estimation for mixtures of Markov processes," Statistics & Probability Letters, Elsevier, vol. 59(3), pages 235-244, October.
  38. Park, Byung-Jung & Zhang, Yunlong & Lord, Dominique, 2010. "Bayesian mixture modeling approach to account for heterogeneity in speed data," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 662-673, June.
  39. Padmaja Ayyagari & Partha Deb & Jason Fletcher & William T. Gallo & Jody L. Sindelar, 2009. "Sin Taxes: Do Heterogeneous Responses Undercut Their Value?," NBER Working Papers 15124, National Bureau of Economic Research, Inc.
  40. Drivas, Kyriakos & Economidou, Claire & Tsionas, Efthymios G., 2014. "A Poisson Stochastic Frontier Model with Finite Mixture Structure," MPRA Paper 57485, University Library of Munich, Germany.
  41. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
  42. Bockenholt, Ulf, 1998. "Mixed INAR(1) Poisson regression models: Analyzing heterogeneity and serial dependencies in longitudinal count data," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 317-338, November.
  43. V. J. Cano Fernandez & G. Guirao Perez & M. C. Rodriguez Donate & M. E. Romero Rodriguez, 2009. "An analysis of count data models for the study of exclusivity in wine consumption," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1563-1574.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.