IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v59y2002i3p235-244.html
   My bibliography  Save this article

Estimation for mixtures of Markov processes

Author

Listed:
  • Park, Jeong-gun
  • Basawa, I. V.

Abstract

Finite mixtures of Markov processes with densities belonging to exponential families are introduced. Quasi-likelihood and maximum likelihood methods are used to estimate the parameters of the mixing distributions and of the component distributions. The E-M algorithm is used to compute the ML estimates. Mixture of Autoregressive processes and of two-state Markov chains are discussed as specific examples. Simulation results on the comparison of quasi-likelihood and ML estimates are reported.

Suggested Citation

  • Park, Jeong-gun & Basawa, I. V., 2002. "Estimation for mixtures of Markov processes," Statistics & Probability Letters, Elsevier, vol. 59(3), pages 235-244, October.
  • Handle: RePEc:eee:stapro:v:59:y:2002:i:3:p:235-244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00127-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Peiming & Cockburn, Iain M & Puterman, Martin L, 1998. "Analysis of Patent Data--A Mixed-Poisson-Regression-Model Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 27-41, January.
    2. Peiming Wang & Martin Puterman, 1999. "Markov Poisson regression models for discrete time series. Part 1: Methodology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(7), pages 855-869.
    3. Peiming Wang & Iain Cockburn & Martin L. Puterman, "undated". "A Mixed Poisson Regression Model for Analysis of Patent Data," Computing in Economics and Finance 1996 _049, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    2. Deb, Partha & Trivedi, Pravin K., 2002. "The structure of demand for health care: latent class versus two-part models," Journal of Health Economics, Elsevier, vol. 21(4), pages 601-625, July.
    3. Chadha, Alka, 2009. "TRIPs and patenting activity: Evidence from the Indian pharmaceutical industry," Economic Modelling, Elsevier, vol. 26(2), pages 499-505, March.
    4. William Greene, 2007. "Correlation in Bivariate Poisson Regression Model," Working Papers 07-14, New York University, Leonard N. Stern School of Business, Department of Economics.
    5. Herriges, Joseph A. & Phaneuf, Daniel J. & Tobias, Justin L., 2008. "Estimating demand systems when outcomes are correlated counts," Journal of Econometrics, Elsevier, vol. 147(2), pages 282-298, December.
    6. Stephen Hynes & William Greene, 2016. "Preference Heterogeneity in Contingent Behaviour Travel Cost Models with On-site Samples: A Random Parameter vs. a Latent Class Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 348-367, June.
    7. Padmaja Ayyagari & Partha Deb & Jason Fletcher & William T. Gallo & Jody L. Sindelar, 2009. "Sin Taxes: Do Heterogeneous Responses Undercut Their Value?," NBER Working Papers 15124, National Bureau of Economic Research, Inc.
    8. Bermúdez, Lluís & Karlis, Dimitris, 2012. "A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3988-3999.
    9. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    10. Dimitris Karlis & Purushottam Papatla & Sudipt Roy, 2016. "Finite mixtures of censored Poisson regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(2), pages 100-122, May.
    11. Conway, Karen Smith & Deb, Partha, 2005. "Is prenatal care really ineffective? Or, is the 'devil' in the distribution?," Journal of Health Economics, Elsevier, vol. 24(3), pages 489-513, May.
    12. Lim, Hwa Kyung & Li, Wai Keung & Yu, Philip L.H., 2014. "Zero-inflated Poisson regression mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 151-158.
    13. Greene, William, 2008. "Functional forms for the negative binomial model for count data," Economics Letters, Elsevier, vol. 99(3), pages 585-590, June.
    14. Deb, Partha & Gallo, William T. & Ayyagari, Padmaja & Fletcher, Jason M. & Sindelar, Jody L., 2011. "The effect of job loss on overweight and drinking," Journal of Health Economics, Elsevier, vol. 30(2), pages 317-327, March.
    15. Vincenzo Atella & Francesco Brindisi & Partha Deb & Furio C. Rosati, 2004. "Determinants of access to physician services in Italy: a latent class seemingly unrelated probit approach," Health Economics, John Wiley & Sons, Ltd., vol. 13(7), pages 657-668, July.
    16. Leila Tahmooresnejad & Catherine Beaudry & Andrea Schiffauerova, 2015. "The role of public funding in nanotechnology scientific production: Where Canada stands in comparison to the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 753-787, January.
    17. Óscar Lourenço & Carlota Quintal & Pedro Lopes Ferreira & Pedro Pita Barros, 2007. "A equidade na utilização de cuidados de saúde em Portugal: Uma avaliação baseada em modelos de contagem," Notas Económicas, Faculty of Economics, University of Coimbra, issue 25, pages 6-26, June.
    18. V. J. Cano Fernandez & G. Guirao Perez & M. C. Rodriguez Donate & M. E. Romero Rodriguez, 2009. "An analysis of count data models for the study of exclusivity in wine consumption," Applied Economics, Taylor & Francis Journals, vol. 41(12), pages 1563-1574.
    19. Hynes, Stephen & Greene, William, 2011. "Estimating recreation demand with on-site panel data: An application of a latent class truncated and endogenously stratified count data model," Working Papers 148925, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    20. William Greene, 2004. "Convenient estimators for the panel probit model: Further results," Empirical Economics, Springer, vol. 29(1), pages 21-47, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:59:y:2002:i:3:p:235-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.