IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/57485.html
   My bibliography  Save this paper

A Poisson Stochastic Frontier Model with Finite Mixture Structure

Author

Listed:
  • Drivas, Kyriakos
  • Economidou, Claire
  • Tsionas, Efthymios G.

Abstract

Standard stochastic frontier models estimate log-linear specifications of production technology, represented mostly by production, cost, profit, revenue, and distance frontiers. We develop a methodology for stochastic frontier models of count data allowing for technological and inefficiency induced heterogeneity in the data and endogenous regressors. We derive the corresponding log-likelihood function and conditional mean of inefficiency to estimate technology regime-specific inefficiency. We further provide empirical evidence that demonstrates the applicability of the proposed model.

Suggested Citation

  • Drivas, Kyriakos & Economidou, Claire & Tsionas, Efthymios G., 2014. "A Poisson Stochastic Frontier Model with Finite Mixture Structure," MPRA Paper 57485, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:57485
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/57485/1/MPRA_paper_57485.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Peiming & Cockburn, Iain M & Puterman, Martin L, 1998. "Analysis of Patent Data--A Mixed-Poisson-Regression-Model Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 27-41, January.
    2. Robert J. Barro, 2013. "Inflation and Economic Growth," Annals of Economics and Finance, Society for AEF, vol. 14(1), pages 121-144, May.
    3. Dionne, Georges & Artis, Manuel & Guillen, Montserrat, 1996. "Count data models for a credit scoring system," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 303-325, September.
    4. Mamuneas, Theofanis P. & Ishaq Nadiri, M., 1996. "Public R&D policies and cost behavior of the US manufacturing industries," Journal of Public Economics, Elsevier, vol. 63(1), pages 57-81, December.
    5. Marios Zachariadis, 2003. "R&D, innovation, and technological progress: a test of the Schumpeterian framework without scale effects," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(3), pages 566-586, August.
    6. Coe, David T. & Helpman, Elhanan, 1995. "International R&D spillovers," European Economic Review, Elsevier, vol. 39(5), pages 859-887, May.
    7. Terza, Joseph V. & Basu, Anirban & Rathouz, Paul J., 2008. "Two-stage residual inclusion estimation: Addressing endogeneity in health econometric modeling," Journal of Health Economics, Elsevier, vol. 27(3), pages 531-543, May.
    8. Daron Acemoglu & Fabrizio Zilibotti, 2001. "Productivity Differences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 563-606.
    9. Efthymios G. Tsionas & Subal C. Kumbhakar, 2004. "Markov switching stochastic frontier model," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 398-425, December.
    10. Fu, Xiaolan & Yang, Qing Gong, 2009. "Exploring the cross-country gap in patenting: A Stochastic Frontier Approach," Research Policy, Elsevier, vol. 38(7), pages 1203-1213, September.
    11. Bottazzi, Laura & Peri, Giovanni, 2003. "Innovation and spillovers in regions: Evidence from European patent data," European Economic Review, Elsevier, vol. 47(4), pages 687-710, August.
    12. Bos, J.W.B. & Economidou, C. & Koetter, M., 2010. "Technology clubs, R&D and growth patterns: Evidence from EU manufacturing," European Economic Review, Elsevier, vol. 54(1), pages 60-79, January.
    13. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    14. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    15. Yonghong Wu, 2005. "The effects of state R&D tax credits in stimulating private R&D expenditure: A cross-state empirical analysis," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 24(4), pages 785-802.
    16. Kejak, Michal, 2003. "Stages of growth in economic development," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 771-800, March.
    17. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    18. N. Gregory Mankiw & David Romer & David N. Weil, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(2), pages 407-437.
    19. Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
    20. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(2), pages 517-549.
    21. Zvi Griliches, 1998. "Productivity and R&D at the Firm Level," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 100-133, National Bureau of Economic Research, Inc.
    22. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    23. Susanto Basu & David N. Weil, 1998. "Appropriate Technology and Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1025-1054.
    24. Mancusi, Maria Luisa, 2008. "International spillovers and absorptive capacity: A cross-country cross-sector analysis based on patents and citations," Journal of International Economics, Elsevier, vol. 76(2), pages 155-165, December.
    25. Peiming Wang & Iain Cockburn & Martin L. Puterman, "undated". "A Mixed Poisson Regression Model for Analysis of Patent Data," Computing in Economics and Finance 1996 _049, Society for Computational Economics.
    26. Dominique Guellec & Bruno Van Pottelsberghe de la Potterie, 2004. "From R&D to Productivity Growth: Do the Institutional Settings and the Source of Funds of R&D Matter?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(3), pages 353-378, July.
    27. Xavier Sala-I-Martin, 1997. "Transfers, Social Safety Nets, and Economic Growth," IMF Staff Papers, Palgrave Macmillan, vol. 44(1), pages 81-102, March.
    28. Costas Azariadis & Allan Drazen, 1990. "Threshold Externalities in Economic Development," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 105(2), pages 501-526.
    29. Davutyan, Nurhan, 1989. "Bank failures as Poisson variates," Economics Letters, Elsevier, vol. 29(4), pages 333-338.
    30. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    31. Ariel Pakes & Zvi Griliches, 1984. "Patents and R&D at the Firm Level: A First Look," NBER Chapters, in: R&D, Patents, and Productivity, pages 55-72, National Bureau of Economic Research, Inc.
    32. Sharon Belenzon & Mark Schankerman, 2010. "Spreading the Word: Geography, Policy and Knowledge Spillovers," CEP Discussion Papers dp1005, Centre for Economic Performance, LSE.
    33. Luis Orea & Subal C. Kumbhakar, 2004. "Efficiency measurement using a latent class stochastic frontier model," Empirical Economics, Springer, vol. 29(1), pages 169-183, January.
    34. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107014169, September.
    35. Bos, J.W.B. & Economidou, C. & Koetter, M. & Kolari, J.W., 2010. "Do all countries grow alike?," Journal of Development Economics, Elsevier, vol. 91(1), pages 113-127, January.
    36. Thomas, V.J. & Sharma, Seema & Jain, Sudhir K., 2011. "Using patents and publications to assess R&D efficiency in the states of the USA," World Patent Information, Elsevier, vol. 33(1), pages 4-10, March.
    37. Rachel Griffith & Stephen Redding & John Van Reenen, 2004. "Mapping the Two Faces of R&D: Productivity Growth in a Panel of OECD Industries," The Review of Economics and Statistics, MIT Press, vol. 86(4), pages 883-895, November.
    38. Daniel J. Wilson, 2009. "Beggar Thy Neighbor? The In-State, Out-of-State, and Aggregate Effects of R&D Tax Credits," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 431-436, May.
    39. Laura Bottazzi & Giovanni Peri, 2007. "The International Dynamics of R&D and Innovation in the Long Run and in The Short Run," Economic Journal, Royal Economic Society, vol. 117(518), pages 486-511, March.
    40. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    41. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    42. Bénédicte Vidaillet & V. d'Estaintot & P. Abécassis, 2005. "Introduction," Post-Print hal-00287137, HAL.
    43. Astrid Cullmann & Jens Schmidt-Ehmcke & Petra Zloczysti, 2009. "Innovation, R&D Efficiency and the Impact of the Regulatory Environment: A Two-Stage Semi-Parametric DEA Approach," Discussion Papers of DIW Berlin 883, DIW Berlin, German Institute for Economic Research.
    44. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    45. Wang, Eric C. & Huang, Weichiao, 2007. "Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach," Research Policy, Elsevier, vol. 36(2), pages 260-273, March.
    46. Bloom, Nick & Griffith, Rachel & Van Reenen, John, 2002. "Do R&D tax credits work? Evidence from a panel of countries 1979-1997," Journal of Public Economics, Elsevier, vol. 85(1), pages 1-31, July.
    47. Charles I. Jones, 1995. "Time Series Tests of Endogenous Growth Models," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 495-525.
    48. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1.
    49. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    50. Wang, Eric C., 2007. "R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 345-360.
    51. Pamela Palazzi, 2011. "Taxation and Innovation," OECD Taxation Working Papers 9, OECD Publishing.
    52. Matt Marx & Deborah Strumsky & Lee Fleming, 2009. "Mobility, Skills, and the Michigan Non-Compete Experiment," Management Science, INFORMS, vol. 55(6), pages 875-889, June.
    53. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    54. Hall, Bronwyn H & Ziedonis, Rosemarie Ham, 2001. "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," RAND Journal of Economics, The RAND Corporation, vol. 32(1), pages 101-128, Spring.
    55. Seema Sharma & V. J. Thomas, 2008. "Inter-country R&D efficiency analysis: An application of data envelopment analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 76(3), pages 483-501, September.
    56. Koop, Gary, 2001. "Cross-Sectoral Patterns of Efficiency and Technical Change in Manufacturing," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(1), pages 73-103, February.
    57. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mutz, Rüdiger & Bornmann, Lutz & Daniel, Hans-Dieter, 2017. "Are there any frontiers of research performance? Efficiency measurement of funded research projects with the Bayesian stochastic frontier analysis for count data," Journal of Informetrics, Elsevier, vol. 11(3), pages 613-628.
    2. Rouven E. Haschka & Helmut Herwartz, 2022. "Endogeneity in pharmaceutical knowledge generation: An instrument‐free copula approach for Poisson frontier models," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(4), pages 942-960, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyriakos Drivas & Claire Economidou & Efthymios G. Tsionas, 2018. "Production of output and ideas: efficiency and growth patterns in the United States," Regional Studies, Taylor & Francis Journals, vol. 52(1), pages 105-118, January.
    2. Bos, J.W.B. & Economidou, C. & Koetter, M., 2010. "Technology clubs, R&D and growth patterns: Evidence from EU manufacturing," European Economic Review, Elsevier, vol. 54(1), pages 60-79, January.
    3. Bos, J.W.B. & Economidou, C. & Koetter, M. & Kolari, J.W., 2010. "Do all countries grow alike?," Journal of Development Economics, Elsevier, vol. 91(1), pages 113-127, January.
    4. Cullmann, Astrid & Zloczysti, Petra, 2013. "Towards an Efficient Use of R&D ? Accounting for Heterogeneity in the OECD," CEPR Discussion Papers 9345, C.E.P.R. Discussion Papers.
    5. Drivas, Kyriakos & Economidou, Claire & Karamanis, Dimitrios & Sanders, Mark, 2020. "Mobility of highly skilled individuals and local innovation activity," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    6. Jaap W. B. Bos & Bertrand Candelon & Claire Economidou, 2016. "Does knowledge spill over across borders and technology regimes?," Journal of Productivity Analysis, Springer, vol. 46(1), pages 63-82, August.
    7. Subal Kumbhakar & Raquel Ortega-Argilés & Lesley Potters & Marco Vivarelli & Peter Voigt, 2012. "Corporate R&D and firm efficiency: evidence from Europe’s top R&D investors," Journal of Productivity Analysis, Springer, vol. 37(2), pages 125-140, April.
    8. A. Minniti & F. Venturini, 2014. "R&D Policy and Schumpeterian Growth: Theory and Evidence," Working Papers wp945, Dipartimento Scienze Economiche, Universita' di Bologna.
    9. Neves, Pedro Cunha & Sequeira, Tiago Neves, 2018. "Spillovers in the production of knowledge: A meta-regression analysis," Research Policy, Elsevier, vol. 47(4), pages 750-767.
    10. repec:use:tkiwps:3232 is not listed on IDEAS
    11. Johanna Vogel, 2015. "The two faces of R&D and human capital: Evidence from Western European regions," Papers in Regional Science, Wiley Blackwell, vol. 94(3), pages 525-551, August.
    12. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    13. Pieri, Fabio & Vecchi, Michela & Venturini, Francesco, 2018. "Modelling the joint impact of R&D and ICT on productivity: A frontier analysis approach," Research Policy, Elsevier, vol. 47(9), pages 1842-1852.
    14. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    15. Bos, Jaap W.B. & Economidou, Claire & Sanders, Mark W.J.L., 2013. "Innovation over the industry life-cycle: Evidence from EU manufacturing," Journal of Economic Behavior & Organization, Elsevier, vol. 86(C), pages 78-91.
    16. Verdolini, Elena & Galeotti, Marzio, 2011. "At home and abroad: An empirical analysis of innovation and diffusion in energy technologies," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 119-134, March.
    17. Eduardo Fé & Richard Hofler, 2013. "Count data stochastic frontier models, with an application to the patents–R&D relationship," Journal of Productivity Analysis, Springer, vol. 39(3), pages 271-284, June.
    18. Marios Zachariadis, 2003. "R&D, innovation, and technological progress: a test of the Schumpeterian framework without scale effects," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(3), pages 566-586, August.
    19. Bulent Guloglu & R. Tekin, 2012. "A Panel Causality Analysis of the Relationship among Research and Development, Innovation, and Economic Growth in High-Income OECD Countries," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 2(1), pages 32-47, June.
    20. Hugo Erken & Piet Donselaar & Roy Thurik, 2018. "Total factor productivity and the role of entrepreneurship," The Journal of Technology Transfer, Springer, vol. 43(6), pages 1493-1521, December.
    21. Drivas, Kyriakos & Economidou, Claire & Karkalakos, Sotiris & Tsionas, Efthymios G., 2016. "Mobility of knowledge and local innovation activity," European Economic Review, Elsevier, vol. 85(C), pages 39-61.

    More about this item

    Keywords

    efficiency; Poisson stochastic frontier; mixture; innovation; states;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:57485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.