IDEAS home Printed from https://ideas.repec.org/p/isu/genres/12934.html
   My bibliography  Save this paper

Estimating Demand Systems when Outcomes Are Correlated Count

Author

Listed:
  • Herriges, Joseph A.
  • Phaneuf, Daniel J.
  • Tobias, Justin

Abstract

We develop a Bayesian posterior simulator for fitting a high dimensional system of ordinal or count outcome equations, illustrating its use by modeling the multiple site recreation demands of individual agents to a set of twenty-nine Iowa lakes. The model flexibly adjusts to match observed frequencies in trip outcomes, permits a flexible correlation pattern among the visited sites, and the posterior simulator for fitting this model is relatively easy to implement. We also describe how the model can be used to conduct counterfactual experiments, including predicting behavioral changes and describing welfare implications resulting from shifts in demographic and site characteristics.

Suggested Citation

  • Herriges, Joseph A. & Phaneuf, Daniel J. & Tobias, Justin, 2008. "Estimating Demand Systems when Outcomes Are Correlated Count," Staff General Research Papers Archive 12934, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:12934
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wang, Peiming & Cockburn, Iain M & Puterman, Martin L, 1998. "Analysis of Patent Data--A Mixed-Poisson-Regression-Model Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 27-41, January.
    2. Patrick Bayer & Christopher Timmins, 2007. "Estimating Equilibrium Models Of Sorting Across Locations," Economic Journal, Royal Economic Society, vol. 117(518), pages 353-374, March.
    3. Dionne, Georges & Gagne, Robert & Gagnon, Francois & Vanasse, Charles, 1997. "Debt, moral hazard and airline safety An empirical evidence," Journal of Econometrics, Elsevier, vol. 79(2), pages 379-402, August.
    4. Rainer Winkelmann, 2004. "Health care reform and the number of doctor visits-an econometric analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 455-472.
    5. Joseph A. Herriges & Daniel J. Phaneuf, 2002. "Inducing Patterns of Correlation and Substitution in Repeated Logit Models of Recreation Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(4), pages 1076-1090.
    6. Englin, Jeffrey & Shonkwiler, J S, 1995. "Estimating Social Welfare Using Count Data Models: An Application to Long-Run Recreation Demand under Conditions of Endogenous Stratification and Truncation," The Review of Economics and Statistics, MIT Press, vol. 77(1), pages 104-112, February.
    7. von Haefen, Roger H. & Phaneuf, Daniel J., 2003. "Estimating preferences for outdoor recreation:: a comparison of continuous and count data demand system frameworks," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 612-630, May.
    8. Chib, Siddhartha & Greenberg, Edward & Winkelmann, Rainer, 1998. "Posterior simulation and Bayes factors in panel count data models," Journal of Econometrics, Elsevier, vol. 86(1), pages 33-54, June.
    9. Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
    10. Egan, Kevin & Herriges, Joseph, 2006. "Multivariate count data regression models with individual panel data from an on-site sample," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 567-581, September.
    11. Peiming Wang & Iain Cockburn & Martin L. Puterman, "undated". "A Mixed Poisson Regression Model for Analysis of Patent Data," Computing in Economics and Finance 1996 _049, Society for Computational Economics.
    12. Ozuna, Teofilo, Jr & Gomez, Irma Adriana, 1994. "Estimating a System of Recreation Demand Functions Using a Seemingly Unrelated Poisson Regression Approach," The Review of Economics and Statistics, MIT Press, vol. 76(2), pages 356-360, May.
    13. Herriges, Joseph A. & Phaneuf, Daniel J., 2002. "Inducing Patterns Correlation and Substitution in Repeated Logit Model of Recreation Demand," Staff General Research Papers Archive 5035, Iowa State University, Department of Economics.
    14. Jeffrey T. LaFrance & W. Michael Hanemann, 1989. "The Dual Structure of Incomplete Demand Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 262-274.
    15. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
    16. Gary King, 1989. "A Seemingly Unrelated Poisson Regression Model," Sociological Methods & Research, , vol. 17(3), pages 235-255, February.
    17. Ruser, John W, 1991. "Workers' Compensation and Occupational Injuries and Illnesses," Journal of Labor Economics, University of Chicago Press, vol. 9(4), pages 325-350, October.
    18. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    19. Rainer Winkelmann, 2000. "Seemingly Unrelated Negative Binomial Regression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 62(4), pages 553-560, September.
    20. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    21. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108423380, September.
    22. John Mullahy, 1997. "Instrumental-Variable Estimation Of Count Data Models: Applications To Models Of Cigarette Smoking Behavior," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 586-593, November.
    23. repec:bla:obuest:v:62:y:2000:i:4:p:553-60 is not listed on IDEAS
    24. Jeffrey Englin & Peter Boxall & David Watson, 1998. "Modeling Recreation Demand in a Poisson System of Equations: An Analysis of the Impact of International Exchange Rates," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(2), pages 255-263.
    25. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Bayesian Analysis of Simultaneous Demand and Supply," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 251-275, September.
    26. Chan,Joshua & Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2019. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9781108437493, September.
    27. Hausman, Jerry A, 1981. "Exact Consumer's Surplus and Deadweight Loss," American Economic Review, American Economic Association, vol. 71(4), pages 662-676, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nobel, Anne & Lizin, Sebastien & Witters, Nele & Rineau, Francois & Malina, Robert, 2020. "The impact of wildfires on the recreational value of heathland: A discrete factor approach with adjustment for on-site sampling," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
    2. Carson, Richard T. & Eagle, Thomas C. & Islam, Towhidul & Louviere, Jordan J., 2022. "Volumetric choice experiments (VCEs)," Journal of choice modelling, Elsevier, vol. 42(C).
    3. Chandra R. Bhat & Rajesh Paleti & Palvinder Singh, 2014. "A Spatial Multivariate Count Model For Firm Location Decisions," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 462-502, June.
    4. Smith, Michael S. & Kauermann, Göran, 2011. "Bicycle commuting in Melbourne during the 2000s energy crisis: A semiparametric analysis of intraday volumes," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1846-1862.
    5. Ferdous, Nazneen & Eluru, Naveen & Bhat, Chandra R. & Meloni, Italo, 2010. "A multivariate ordered-response model system for adults' weekday activity episode generation by activity purpose and social context," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 922-943, September.
    6. Xie, Lusi & Adamowicz, Wiktor & Lloyd-Smith, Patrick, 2023. "Spatial and temporal responses to incentives: An application to wildlife disease management," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    7. Bhattacharjee, Subhra & Kling, Catherine L. & Herriges, Joseph A., 2009. "Kuhn-Tucker Estimation of Recreation Demand – A Study of Temporal Stability," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49408, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abidoye, Babatunde Oluwakayode, 2010. "Bayesian inference in modeling recreation demand," ISU General Staff Papers 201001010800002496, Iowa State University, Department of Economics.
    2. Babatunde O. Abidoye & Joseph A. Herriges & Justin L. Tobias, 2012. "Controlling for Observed and Unobserved Site Characteristics in RUM Models of Recreation Demand," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1070-1093.
    3. Phaneuf, Daniel J. & Smith, V. Kerry, 2006. "Recreation Demand Models," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 2, chapter 15, pages 671-761, Elsevier.
    4. Hellström, Jörgen & Nordström, Jonas, 2012. "Demand and welfare effects in recreational travel models: Accounting for substitution between number of trips and days to stay," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 446-456.
    5. Stephen Hynes & William Greene, 2016. "Preference Heterogeneity in Contingent Behaviour Travel Cost Models with On-site Samples: A Random Parameter vs. a Latent Class Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(2), pages 348-367, June.
    6. Hellström, Jörgen & Nordström, Jonas, 2005. "Demand and Welfare Effects in Recreational Travel Models: A Bivariate Count Data Approach," Umeå Economic Studies 648, Umeå University, Department of Economics.
    7. Danaf, Mazen & Guevara, Angelo & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Endogeneity in adaptive choice contexts: Choice-based recommender systems and adaptive stated preferences surveys," Journal of choice modelling, Elsevier, vol. 34(C).
    8. Danaf, Mazen & Guevara, C. Angelo & Ben-Akiva, Moshe, 2023. "A control-function correction for endogeneity in random coefficients models: The case of choice-based recommender systems," Journal of choice modelling, Elsevier, vol. 46(C).
    9. Stephen Hynes & William Greene, 2013. "A Panel Travel Cost Model Accounting for Endogenous Stratification and Truncation: A Latent Class Approach," Land Economics, University of Wisconsin Press, vol. 89(1), pages 177-192.
    10. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    11. Daeseok Han & Jin-Hyuk Lee & Ki-Tae Park, 2022. "Deterioration Models for Bridge Pavement Materials for a Life Cycle Cost Analysis," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    12. Christopher Moore & Daniel Phaneuf & Walter Thurman, 2011. "A Bayesian Bioeconometric Model of Invasive Species Control: The Case of the Hemlock Woolly Adelgid," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 50(1), pages 1-26, September.
    13. Daeseok Han, 2021. "Heterogeneous Deterioration Process and Risk of Deficiencies of Aging Bridges for Transportation Asset Management," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    14. Hilger, James & Englin, Jeffrey, 2009. "Utility theoretic semi-logarithmic incomplete demand systems in a natural experiment: Forest fire impacts on recreational values and use," Resource and Energy Economics, Elsevier, vol. 31(4), pages 287-298, November.
    15. Denise Desjardins & Georges Dionne & Yang Lu, 2023. "Hierarchical random‐effects model for the insurance pricing of vehicles belonging to a fleet," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 242-259, March.
    16. Klaus Moeltner & James J. Murphy & John K. Stranlund & Maria Alejandra Velez, 2013. "Institutional heterogeneity in social dilemma games: a Bayesian examination," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 2, pages 67-88, Edward Elgar Publishing.
    17. Park, Yuri & Koo, Yoonmo, 2016. "An empirical analysis of switching cost in the smartphone market in South Korea," Telecommunications Policy, Elsevier, vol. 40(4), pages 307-318.
    18. Shinya Sugawara & Yasuhiro Omori, 2017. "An Econometric Analysis of Insurance Markets with Separate Identification for Moral Hazard and Selection Problems," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 473-502, October.
    19. Maksym, Obrizan, 2010. "A Bayesian Model of Sample Selection with a Discrete Outcome Variable," MPRA Paper 28577, University Library of Munich, Germany.
    20. William Greene, 2001. "Fixed and Random Effects in Nonlinear Models," Working Papers 01-01, New York University, Leonard N. Stern School of Business, Department of Economics.

    More about this item

    Keywords

    recreation demand; Demand systems; counts; Bayesian analysis;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:12934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Curtis Balmer (email available below). General contact details of provider: https://edirc.repec.org/data/deiasus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.