My bibliography
Save this item
Square-root lasso: pivotal recovery of sparse signals via conic programming
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Liqian Cai & Arnab Bhattacharjee & Roger Calantone & Taps Maiti, 2019. "Variable Selection with Spatially Autoregressive Errors: A Generalized Moments LASSO Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 146-200, September.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023.
"Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2019. "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure," Papers 1902.10991, arXiv.org, revised Dec 2020.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2018.
"Approximate residual balancing: debiased inference of average treatment effects in high dimensions,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
- Susan Athey & Guido W. Imbens & Stefan Wager, 2016. "Approximate Residual Balancing: De-Biased Inference of Average Treatment Effects in High Dimensions," Papers 1604.07125, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016.
"Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk,"
Papers
1607.00286, arXiv.org, revised Oct 2019.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers 54/17, Institute for Fiscal Studies.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers CWP54/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Anders Bredahl Kock, 2013. "Oracle inequalities for high-dimensional panel data models," CREATES Research Papers 2013-20, Department of Economics and Business Economics, Aarhus University.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013.
"Pivotal estimation via square-root lasso in nonparametric regression,"
CeMMAP working papers
CWP62/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Lie Wang, 2013. "Pivotal estimation via square-root lasso in nonparametric regression," CeMMAP working papers 62/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Central limit theorems and multiplier bootstrap when p is much larger than n,"
CeMMAP working papers
45/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Central limit theorems and multiplier bootstrap when p is much larger than n," CeMMAP working papers CWP45/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020.
"lassopack: Model selection and prediction with regularized regression in Stata,"
Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E, 2019. "lassopack: Model Selection and Prediction with Regularized Regression in Stata," IZA Discussion Papers 12081, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2019. "lassopack: Model selection and prediction with regularized regression in Stata," Papers 1901.05397, arXiv.org.
- Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
- Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
- Sardy, Sylvain & Diaz-Rodriguez, Jairo & Giacobino, Caroline, 2022. "Thresholding tests based on affine LASSO to achieve non-asymptotic nominal level and high power under sparse and dense alternatives in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Beyhum, Jad, 2019. "Inference robust to outliers with L1‐norm penalization," TSE Working Papers 19-1032, Toulouse School of Economics (TSE).
- Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
- Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013.
"Program evaluation with high-dimensional data,"
CeMMAP working papers
CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers 55/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 57/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers CWP55/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers 33/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 77/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers CWP33/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhaonan Qu & Yongchan Kwon, 2024. "Distributionally Robust Instrumental Variables Estimation," Papers 2410.15634, arXiv.org.
- Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
- Daisuke Ikeda & Mayumi Ojima & Koji Takahashi, 2019. "Financial Interconnectedness, Amplification, and Cross-Border Activity," Bank of Japan Working Paper Series 19-E-11, Bank of Japan.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Papers 1501.03430, arXiv.org, revised Aug 2015.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers CWP36/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers 36/16, Institute for Fiscal Studies.
- Mehmet Caner & Anders Bredahl Kock, 2016.
"Oracle Inequalities for Convex Loss Functions with Nonlinear Targets,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
- Mehmet Caner & Anders Bredahl Kock, 2013. "Oracle Inequalities for Convex Loss Functions with Non-Linear Targets," CREATES Research Papers 2013-51, Department of Economics and Business Economics, Aarhus University.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021.
"Economic Predictions With Big Data: The Illusion of Sparsity,"
Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2017. "Economic Predictions with Big Data: The Illusion Of Sparsity," CEPR Discussion Papers 12256, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic Predictions with Big Data: The Illusion of Sparsity," Liberty Street Economics 20180521, Federal Reserve Bank of New York.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2018. "Economic predictions with big data: the illusion of sparsity," Staff Reports 847, Federal Reserve Bank of New York.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2021. "Economic predictions with big data: the illusion of sparsity," Working Paper Series 2542, European Central Bank.
- Kock, Anders Bredahl & Callot, Laurent, 2015.
"Oracle inequalities for high dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
- Jiang, He & Luo, Shihua & Dong, Yao, 2021. "Simultaneous feature selection and clustering based on square root optimization," European Journal of Operational Research, Elsevier, vol. 289(1), pages 214-231.
- Fan, Xianqiu & Cheng, Jun & Wang, Hailing & Zhang, Bin & Chen, Zhenzhen, 2024. "A fast trans-lasso algorithm with penalized weighted score function," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Koenker, Roger & Mizera, Ivan, 2014. "Convex Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i05).
- Jad Beyhum, 2020. "Inference robust to outliers with L1‐norm penalization," Post-Print hal-03235868, HAL.
- Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
- Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015.
"A lava attack on the recovery of sums of dense and sparse signals,"
CeMMAP working papers
56/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP05/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," Papers 1502.03155, arXiv.org, revised Mar 2015.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers 05/15, Institute for Fiscal Studies.
- Francesco Decarolis & Cristina Giorgiantonio, 2020. "Corruption red flags in public procurement: new evidence from Italian calls for tenders," Questioni di Economia e Finanza (Occasional Papers) 544, Bank of Italy, Economic Research and International Relations Area.
- Lee, Sokbae & Liao, Yuan & Seo, Myung Hwan & Shin, Youngki, 2021.
"Sparse HP filter: Finding kinks in the COVID-19 contact rate,"
Journal of Econometrics, Elsevier, vol. 220(1), pages 158-180.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Department of Economics Working Papers 2020-06, McMaster University.
- Sokbae (Simon) Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP filter: Finding kinks in the COVID-19 contact rate," CeMMAP working papers CWP32/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Working Paper Series no136, Institute of Economic Research, Seoul National University.
- Sokbae Lee & Yuan Liao & Myung Hwan Seo & Youngki Shin, 2020. "Sparse HP Filter: Finding Kinks in the COVID-19 Contact Rate," Papers 2006.10555, arXiv.org, revised Jul 2020.
- Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
- Xie, Jichun & Kang, Jian, 2017. "High-dimensional tests for functional networks of brain anatomic regions," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 70-88.
- Mert Hakan Hekimoğlu & Burak Kazaz, 2020. "Analytics for Wine Futures: Realistic Prices," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2096-2120, September.
- Saulius Jokubaitis & Remigijus Leipus, 2022. "Asymptotic Normality in Linear Regression with Approximately Sparse Structure," Mathematics, MDPI, vol. 10(10), pages 1-28, May.
- Wagner Piazza Gaglianone & João Victor Issler, 2014.
"Microfounded Forecasting,"
Working Papers Series
372, Central Bank of Brazil, Research Department.
- Gaglianone, Wagner Piazza & Issler, João Victor, 2019. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 813, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Gaglianone, Wagner Piazza & Issler, João Victor, 2015. "Microfounded forecasting," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 766, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2015. "Factorisable sparse tail event curves," SFB 649 Discussion Papers 2015-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Yao Dong & He Jiang, 2018. "A Two-Stage Regularization Method for Variable Selection and Forecasting in High-Order Interaction Model," Complexity, Hindawi, vol. 2018, pages 1-12, November.
- Zhu, Ying, 2013. "Sparse Linear Models and Two-Stage Estimation in High-Dimensional Settings with Possibly Many Endogenous Regressors," MPRA Paper 49846, University Library of Munich, Germany.
- Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
- Xie, Fang & Xu, Lihu & Yang, Youcai, 2017. "Lasso for sparse linear regression with exponentially β-mixing errors," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 64-70.
- Jacob Bien & Irina Gaynanova & Johannes Lederer & Christian L. Müller, 2019. "Prediction error bounds for linear regression with the TREX," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 451-474, June.
- Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
- Adam Nowak & Patrick Smith, 2015. "Textual Analysis in Real Estate," Working Papers 15-34, Department of Economics, West Virginia University.
- Quoc Tran-Dinh, 2019. "Proximal alternating penalty algorithms for nonsmooth constrained convex optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 1-43, January.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Patric Müller & Sara Geer, 2015. "The Partial Linear Model in High Dimensions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 580-608, June.
- Simon B chler, Maximilian v. Ehrlich, 2021. "Quantifying Land Use Regulation and its Determinants - Ease of Residential Development across Swiss Municipalities," Diskussionsschriften credresearchpaper32, Universitaet Bern, Departement Volkswirtschaft - CRED.
- Achim Ahrens & Arnab Bhattacharjee, 2015. "Two-Step Lasso Estimation of the Spatial Weights Matrix," Econometrics, MDPI, vol. 3(1), pages 1-28, March.
- Olga Klopp, 2012. "Noisy Low-rank Matrix Completion with General Sampling Distribution," Working Papers 2012-06, Center for Research in Economics and Statistics.
- Mingrui Zhong & Zanhua Yin & Zhichao Wang, 2023. "Variable Selection for Sparse Logistic Regression with Grouped Variables," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Robust inference in high-dimensional approximately sparse quantile regression models,"
CeMMAP working papers
70/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Robust inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP70/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ismail Shah & Hina Naz & Sajid Ali & Amani Almohaimeed & Showkat Ahmad Lone, 2023. "A New Quantile-Based Approach for LASSO Estimation," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
- Ayed M. Alrashdi & Meshari Alazmi & Masad A. Alrasheedi, 2023. "Generalized Penalized Constrained Regression: Sharp Guarantees in High Dimensions with Noisy Features," Mathematics, MDPI, vol. 11(17), pages 1-27, August.
- Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
- Timothy B. Armstrong & Michal Koles'ar & Soonwoo Kwon, 2020.
"Bias-Aware Inference in Regularized Regression Models,"
Papers
2012.14823, arXiv.org, revised Aug 2023.
- Timothy B. Armstrong & Michal Kolesár & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Working Papers 2020-2, Princeton University. Economics Department..
- Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
- Jana Janková & Rajen D. Shah & Peter Bühlmann & Richard J. Samworth, 2020. "Goodness‐of‐fit testing in high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 773-795, July.
- van de Geer, Sara, 2016. "Worst possible sub-directions in high-dimensional models," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 248-260.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross-border bank claims: The role of foreign-owned banks in emerging countries," Working Papers 2023.06, International Network for Economic Research - INFER.
- Park, Sujeong & Powell, David, 2021.
"Is the rise in illicit opioids affecting labor supply and disability claiming rates?,"
Journal of Health Economics, Elsevier, vol. 76(C).
- Sujeong Park & David Powell, 2020. "Is the Rise in Illicit Opioids Affecting Labor Supply and Disability Claiming Rates?," NBER Working Papers 27804, National Bureau of Economic Research, Inc.
- Olga Klopp, 2012. "High Dimensional Matrix Estimation With Unknown Variance Of The Noise," Working Papers 2012-05, Center for Research in Economics and Statistics.
- Alexandre Belloni & Victor Chernozhukov & Abhishek Kaul & Mathieu Rosenbaum & Alexandre B. Tsybakov, 2017. "Pivotal Estimation Via Self-Normalization for High-Dimensional Linear Models with Errors in Variables," Working Papers 2017-26, Center for Research in Economics and Statistics.
- Jonas Peters & Peter Bühlmann & Nicolai Meinshausen, 2016. "Causal inference by using invariant prediction: identification and confidence intervals," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 947-1012, November.
- Xi Chen & Ye Luo & Martin Spindler, 2019. "Adaptive Discrete Smoothing for High-Dimensional and Nonlinear Panel Data," Papers 1912.12867, arXiv.org, revised Jan 2020.
- Aur'elien Ouattara & Matthieu Bult'e & Wan-Ju Lin & Philipp Scholl & Benedikt Veit & Christos Ziakas & Florian Felice & Julien Virlogeux & George Dikos, 2021. "Scalable Econometrics on Big Data -- The Logistic Regression on Spark," Papers 2106.10341, arXiv.org.
- Loann David Denis Desboulets, 2020. "Sparse Manifolds Graphical Modelling with Missing Values: An Application to the Commodity Futures Market," Working Papers hal-02986982, HAL.
- Koike, Yuta & Tanoue, Yuta, 2019. "Oracle inequalities for sign constrained generalized linear models," Econometrics and Statistics, Elsevier, vol. 11(C), pages 145-157.
- Saulius Jokubaitis & Dmitrij Celov & Remigijus Leipus, 2019. "Sparse structures with LASSO through Principal Components: forecasting GDP components in the short-run," Papers 1906.07992, arXiv.org, revised Oct 2020.
- Ben Gillen & Erik Snowberg & Leeat Yariv, 2015. "Experimenting with Measurement Error: Techniques with Applications to the Caltech Cohort Study," NBER Working Papers 21517, National Bureau of Economic Research, Inc.
- Wu, Xiaofei & Ming, Hao & Zhang, Zhimin & Cui, Zhenyu, 2024. "Multi-block alternating direction method of multipliers for ultrahigh dimensional quantile fused regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011.
"Estimation of treatment effects with high-dimensional controls,"
CeMMAP working papers
CWP42/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Estimation of treatment effects with high-dimensional controls," CeMMAP working papers 42/11, Institute for Fiscal Studies.
- Eric Gautier & Alexandre Tsybakov, 2013.
"Pivotal estimation in high-dimensional regression via linear programming,"
Working Papers
hal-00805556, HAL.
- Eric Gautier & Alexandre Tsybakov, 2013. "Pivotal estimation in high-dimensional regression via linear programming," Papers 1303.7092, arXiv.org, revised Apr 2013.
- Eric Gautier & Alexandre B, Tsybakov, 2013. "Pivotal Estimation in High-Dimensional Regression via Linear Programming," Working Papers 2013-40, Center for Research in Economics and Statistics.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011.
"Inference for High-Dimensional Sparse Econometric Models,"
Papers
1201.0220, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference for high-dimensional sparse econometric models," CeMMAP working papers CWP41/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhang Haixiang & Zheng Yinan & Yoon Grace & Zhang Zhou & Gao Tao & Joyce Brian & Zhang Wei & Schwartz Joel & Vokonas Pantel & Colicino Elena & Baccarelli Andrea & Hou Lifang & Liu Lei, 2017. "Regularized estimation in sparse high-dimensional multivariate regression, with application to a DNA methylation study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(3), pages 159-171, August.
- repec:hum:wpaper:sfb649dp2015-034 is not listed on IDEAS
- Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
- Wanling Xie & Hu Yang, 2023. "Group sparse recovery via group square-root elastic net and the iterative multivariate thresholding-based algorithm," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 469-507, September.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Demand Estimation with Machine Learning and Model Combination," NBER Working Papers 20955, National Bureau of Economic Research, Inc.
- Jana Janková & Sara Geer, 2017. "Honest confidence regions and optimality in high-dimensional precision matrix estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 143-162, March.
- Pun, Chi Seng & Hadimaja, Matthew Zakharia, 2021. "A self-calibrated direct approach to precision matrix estimation and linear discriminant analysis in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Quoc Tran-Dinh, 2017. "Adaptive smoothing algorithms for nonsmooth composite convex minimization," Computational Optimization and Applications, Springer, vol. 66(3), pages 425-451, April.
- Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
- Barbara Guardabascio & Filippo Moauro & Luke Mosley, 2024. "Indirect estimation of the monthly transport turnover indicator in Italy," Empirical Economics, Springer, vol. 67(2), pages 531-566, August.
- Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
- Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
- Wang, Lie, 2013. "The L1 penalized LAD estimator for high dimensional linear regression," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 135-151.
- Alexis Derumigny, 2017. "Improved bounds for Square-Root Lasso and Square-Root Slope," Working Papers 2017-53, Center for Research in Economics and Statistics.
- Tianxi Cai & T. Tony Cai & Zijian Guo, 2021. "Optimal statistical inference for individualized treatment effects in high‐dimensional models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 669-719, September.