IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v69y2021i1p346-359.html
   My bibliography  Save this article

Nonsparse Learning with Latent Variables

Author

Listed:
  • Zemin Zheng

    (International Institute of Finance, School of Management, University of Science and Technology of China, Hefei 230026, China)

  • Jinchi Lv

    (Marshall School of Business, University of Southern California, Los Angeles, California 90089)

  • Wei Lin

    (School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China)

Abstract

As a popular tool for producing meaningful and interpretable models, large-scale sparse learning works efficiently in many optimization applications when the underlying structures are indeed or close to sparse. However, naively applying the existing regularization methods can result in misleading outcomes because of model misspecification. In this paper, we consider nonsparse learning under the factors plus sparsity structure, which yields a joint modeling of sparse individual effects and common latent factors. A new methodology of nonsparse learning with latent variables (NSL) is proposed for joint estimation of the effects of two groups of features, one for individual effects and the other associated with the latent substructures, when the nonsparse effects are captured by the leading population principal component score vectors. We derive the convergence rates of both sample principal components and their score vectors that hold for a wide class of distributions. With the properly estimated latent variables, properties including model selection consistency and oracle inequalities under various prediction and estimation losses are established. Our new methodology and results are evidenced by simulation and real-data examples.

Suggested Citation

  • Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
  • Handle: RePEc:inm:oropre:v:69:y:2021:i:1:p:346-359
    DOI: 10.1287/opre.2020.2005
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2020.2005
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2020.2005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yinchu Zhu & Jelena Bradic, 2018. "Linear Hypothesis Testing in Dense High-Dimensional Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1583-1600, October.
    2. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    3. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    4. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    5. Jianqing Fan & Shaojun Guo & Ning Hao, 2012. "Variance estimation using refitted cross‐validation in ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 37-65, January.
    6. Jinchi Lv & Jun S. Liu, 2014. "Model selection principles in misspecified models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 141-167, January.
    7. Deng Pan & Haijin He & Xinyuan Song & Liuquan Sun, 2015. "Regression Analysis of Additive Hazards Model With Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1148-1159, September.
    8. Huan Xu & Constantine Caramanis & Shie Mannor, 2016. "Statistical Optimization in High Dimensions," Operations Research, INFORMS, vol. 64(4), pages 958-979, August.
    9. Tingni Sun & Cun-Hui Zhang, 2012. "Scaled sparse linear regression," Biometrika, Biometrika Trust, vol. 99(4), pages 879-898.
    10. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    11. Ruth E. Ley & Peter J. Turnbaugh & Samuel Klein & Jeffrey I. Gordon, 2006. "Human gut microbes associated with obesity," Nature, Nature, vol. 444(7122), pages 1022-1023, December.
    12. Yoshimasa Uematsu & Shinya Tanaka, 2019. "High†dimensional macroeconomic forecasting and variable selection via penalized regression," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 34-56.
    13. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    14. Jeffrey T Leek & John D Storey, 2007. "Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis," PLOS Genetics, Public Library of Science, vol. 3(9), pages 1-12, September.
    15. Mengjie Chen & Zhao Ren & Hongyu Zhao & Harrison Zhou, 2016. "Asymptotically Normal and Efficient Estimation of Covariate-Adjusted Gaussian Graphical Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 394-406, March.
    16. Peter J. Turnbaugh & Ruth E. Ley & Michael A. Mahowald & Vincent Magrini & Elaine R. Mardis & Jeffrey I. Gordon, 2006. "An obesity-associated gut microbiome with increased capacity for energy harvest," Nature, Nature, vol. 444(7122), pages 1027-1031, December.
    17. Cheng Yong Tang & Chenlei Leng, 2010. "Penalized high-dimensional empirical likelihood," Biometrika, Biometrika Trust, vol. 97(4), pages 905-920.
    18. Yingying Fan & Emre Demirkaya & Gaorong Li & Jinchi Lv, 2020. "RANK: Large-Scale Inference With Graphical Nonlinear Knockoffs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 362-379, January.
    19. Yingying Fan & Jinchi Lv, 2013. "Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1044-1061, September.
    20. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    21. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    22. Wei Lin & Rui Feng & Hongzhe Li, 2015. "Regularization Methods for High-Dimensional Instrumental Variables Regression With an Application to Genetical Genomics," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 270-288, March.
    23. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    24. Zemin Zheng & Yingying Fan & Jinchi Lv, 2014. "High dimensional thresholded regression and shrinkage effect," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(3), pages 627-649, June.
    25. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    26. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Ruipeng & Li, Daoji & Zheng, Zemin, 2021. "Parallel integrative learning for large-scale multi-response regression with incomplete outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    2. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    2. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Adel Javanmard & Jason D. Lee, 2020. "A flexible framework for hypothesis testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 685-718, July.
    4. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    5. Xiaofei Wu & Rongmei Liang & Hu Yang, 2022. "Penalized and constrained LAD estimation in fixed and high dimension," Statistical Papers, Springer, vol. 63(1), pages 53-95, February.
    6. Zheng, Zemin & Li, Yang & Yu, Chongxiu & Li, Gaorong, 2018. "Balanced estimation for high-dimensional measurement error models," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 78-91.
    7. Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
    8. Tianxi Cai & T. Tony Cai & Zijian Guo, 2021. "Optimal statistical inference for individualized treatment effects in high‐dimensional models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 669-719, September.
    9. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    10. Panxu Yuan & Yinfei Kong & Gaorong Li, 2024. "FDR control and power analysis for high-dimensional logistic regression via StabKoff," Statistical Papers, Springer, vol. 65(5), pages 2719-2749, July.
    11. Wan, Runzhe & Li, Yingying & Lu, Wenbin & Song, Rui, 2024. "Mining the factor zoo: Estimation of latent factor models with sufficient proxies," Journal of Econometrics, Elsevier, vol. 239(2).
    12. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," CESifo Working Paper Series 5824, CESifo.
    15. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
    16. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    17. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    18. Su, Miaomiao & Wang, Qihua, 2022. "A convex programming solution based debiased estimator for quantile with missing response and high-dimensional covariables," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    19. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    20. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:69:y:2021:i:1:p:346-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.