Bias-Aware Inference in Regularized Regression Models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Timothy B. Armstrong & Michal Kolesár & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Working Papers 2020-2, Princeton University. Economics Department..
References listed on IDEAS
- Timothy B. Armstrong & Michal Kolesár, 2018.
"Optimal Inference in a Class of Regression Models,"
Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
- Timothy B. Armstrong & Michal Koles�r, 2016. "Optimal Inference in a Class of Regression Models," Cowles Foundation Discussion Papers 2043, Cowles Foundation for Research in Economics, Yale University.
- Timothy B. Armstrong & Michal Koles�r, 2016. "Optimal Inference in a Class of Regression Models," Cowles Foundation Discussion Papers 2043R2, Cowles Foundation for Research in Economics, Yale University, revised Dec 2017.
- Timothy B. Armstrong & Michal Koles�r, 2016. "Optimal Inference in a Class of Regression Models," Cowles Foundation Discussion Papers 2043R, Cowles Foundation for Research in Economics, Yale University, revised May 2017.
- Emily Oster, 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 187-204, April.
- Timothy B. Armstrong & Michal Kolesár, 2021.
"Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness,"
Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
- Timothy B. Armstrong & Michal Koles'r, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Cowles Foundation Discussion Papers 2115R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2018.
- Timothy B. Armstrong & Michal Koles'r, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Cowles Foundation Discussion Papers 2115, Cowles Foundation for Research in Economics, Yale University.
- Timothy B. Armstrong & Michal Koles'ar, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Papers 1712.04594, arXiv.org, revised Jan 2021.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Karthik Muralidharan & Mauricio Romero & Kaspar Wüthrich, 2019.
"Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments,"
NBER Working Papers
26562, National Bureau of Economic Research, Inc.
- Karthik Muralidharan & Mauricio Romero & Kaspar Wüthrich, 2020. "Factorial Designs, Model Selection, and (Incorrect) Inference in Randomized Experiments," CESifo Working Paper Series 8137, CESifo.
- Chenchuan (Mark) Li & Ulrich K. Müller, 2020. "Linear Regression with Many Controls of Limited Explanatory Power," Working Papers 2020-57, Princeton University. Economics Department..
- A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
- Armstrong, Timothy B. & Chan, Hock Peng, 2016.
"Multiscale adaptive inference on conditional moment inequalities,"
Journal of Econometrics, Elsevier, vol. 194(1), pages 24-43.
- Timothy B. Armstrong & Hock Peng Chan, 2013. "Multiscale Adaptive Inference on Conditional Moment Inequalities," Cowles Foundation Discussion Papers 1885R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2015.
- Timothy B. Armstrong & Hock Peng Chan, 2013. "Multiscale Adaptive Inference on Conditional Moment Inequalities," Cowles Foundation Discussion Papers 1885, Cowles Foundation for Research in Economics, Yale University.
- Timothy B. Armstrong & Hock Peng Chan, 2013. "Multiscale Adaptive Inference on Conditional Moment Inequalities," Cowles Foundation Discussion Papers 1885R, Cowles Foundation for Research in Economics, Yale University, revised Oct 2014.
- Michal Kolesár & Christoph Rothe, 2018.
"Inference in Regression Discontinuity Designs with a Discrete Running Variable,"
American Economic Review, American Economic Association, vol. 108(8), pages 2277-2304, August.
- Kolesár, Michal & Rothe, Christoph, 2016. "Inference in Regression Discontinuity Designs with a Discrete Running Variable," IZA Discussion Papers 9990, Institute of Labor Economics (IZA).
- Timothy B. Armstrong & Michal Kolesár, 2021.
"Sensitivity analysis using approximate moment condition models,"
Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
- Timothy B. Armstrong & Michal Koles'r, 2018. "Sensitivity Analysis using Approximate Moment Condition Models," Cowles Foundation Discussion Papers 2158, Cowles Foundation for Research in Economics, Yale University.
- Timothy B. Armstrong & Michal Koles'ar, 2018. "Sensitivity Analysis using Approximate Moment Condition Models," Papers 1808.07387, arXiv.org, revised Jul 2020.
- Timothy B. Armstrong & Michal Koles'r, 2018. "Sensitivity Analysis using Approximate Moment Condition Models," Cowles Foundation Discussion Papers 2158R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2019.
- Timothy B. Armstrong & Michal Kolesár, 2020. "Sensitivity Analysis using Approximate Moment Condition Models," Working Papers 2020-28, Princeton University. Economics Department..
- Koohyun Kwon & Soonwoo Kwon, 2020. "Inference in Regression Discontinuity Designs under Monotonicity," Papers 2011.14216, arXiv.org.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Guido Imbens & Stefan Wager, 2019. "Optimized Regression Discontinuity Designs," The Review of Economics and Statistics, MIT Press, vol. 101(2), pages 264-278, May.
- Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Philipp Ketz & Adam McCloskey, 2021.
"Short and Simple Confidence Intervals when the Directions of Some Effects are Known,"
Papers
2109.08222, arXiv.org.
- Philipp Ketz & Adam Mccloskey, 2024. "Short and Simple Confidence Intervals When the Directions of Some Effects Are Known," PSE-Ecole d'économie de Paris (Postprint) halshs-04630222, HAL.
- Philipp Ketz & Adam Mccloskey, 2022. "Short and Simple Confidence Intervals when the Directions of Some Effects are Known," Post-Print halshs-03957242, HAL.
- Philipp Ketz & Adam Mccloskey, 2022. "Short and Simple Confidence Intervals when the Directions of Some Effects are Known," PSE-Ecole d'économie de Paris (Postprint) halshs-03957242, HAL.
- Philipp Ketz & Adam Mccloskey, 2024. "Short and Simple Confidence Intervals When the Directions of Some Effects Are Known," Working Papers hal-03388199, HAL.
- Philipp Ketz & Adam Mccloskey, 2024. "Short and Simple Confidence Intervals When the Directions of Some Effects Are Known," Post-Print halshs-04630222, HAL.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013.
"Uniform post selection inference for LAD regression and other z-estimation problems,"
CeMMAP working papers
CWP74/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform post selection inference for LAD regression and other z-estimation problems," CeMMAP working papers 74/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers 51/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Uniform Post Selection Inference for LAD Regression and Other Z-estimation problems," Papers 1304.0282, arXiv.org, revised Oct 2020.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Uniform post selection inference for LAD regression and other Z-estimation problems," CeMMAP working papers CWP51/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016.
"Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk,"
Papers
1607.00286, arXiv.org, revised Oct 2019.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers 54/17, Institute for Fiscal Studies.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers CWP54/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020.
"lassopack: Model selection and prediction with regularized regression in Stata,"
Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E, 2019. "lassopack: Model Selection and Prediction with Regularized Regression in Stata," IZA Discussion Papers 12081, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2019. "lassopack: Model selection and prediction with regularized regression in Stata," Papers 1901.05397, arXiv.org.
- Adamek, Robert & Smeekes, Stephan & Wilms, Ines, 2023.
"Lasso inference for high-dimensional time series,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1114-1143.
- Robert Adamek & Stephan Smeekes & Ines Wilms, 2020. "Lasso Inference for High-Dimensional Time Series," Papers 2007.10952, arXiv.org, revised Sep 2022.
- Philipp Ketz & Adam McCloskey, 2021.
"Short and Simple Confidence Intervals when the Directions of Some Effects are Known,"
Papers
2109.08222, arXiv.org.
- Philipp Ketz & Adam Mccloskey, 2024. "Short and Simple Confidence Intervals When the Directions of Some Effects Are Known," Working Papers hal-03388199, HAL.
- Philipp Ketz & Adam Mccloskey, 2024. "Short and Simple Confidence Intervals When the Directions of Some Effects Are Known," Post-Print halshs-04630222, HAL.
- Philipp Ketz & Adam Mccloskey, 2024. "Short and Simple Confidence Intervals When the Directions of Some Effects Are Known," PSE-Ecole d'économie de Paris (Postprint) halshs-04630222, HAL.
- Philipp Ketz & Adam Mccloskey, 2022. "Short and Simple Confidence Intervals when the Directions of Some Effects are Known," Post-Print halshs-03957242, HAL.
- Philipp Ketz & Adam Mccloskey, 2022. "Short and Simple Confidence Intervals when the Directions of Some Effects are Known," PSE-Ecole d'économie de Paris (Postprint) halshs-03957242, HAL.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016.
"Post-Selection Inference for Generalized Linear Models With Many Controls,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
- Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2013. "Post-Selection Inference for Generalized Linear Models with Many Controls," Papers 1304.3969, arXiv.org, revised Mar 2016.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Caner, Mehmet & Kock, Anders Bredahl, 2018.
"Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
- Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
- Jana Janková & Rajen D. Shah & Peter Bühlmann & Richard J. Samworth, 2020. "Goodness‐of‐fit testing in high dimensional generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 773-795, July.
More about this item
JEL classification:
- C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-02-01 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2012.14823. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.