My bibliography
Save this item
Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
- Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016.
"A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
- Audrone Virbickaite & M. Concepci'on Aus'in & Pedro Galeano, 2013. "A Bayesian Non-Parametric Approach to Asymmetric Dynamic Conditional Correlation Model With Application to Portfolio Selection," Papers 1301.5129, arXiv.org, revised Jan 2014.
- Laura Liu, 2018.
"Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective,"
Finance and Economics Discussion Series
2018-036, Board of Governors of the Federal Reserve System (U.S.).
- Laura Liu, 2020. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," CAEPR Working Papers 2020-003, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu, 2018. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," Papers 1805.04178, arXiv.org, revised Oct 2021.
- Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
- Jim E. Griffin & Fabrizio Leisen, 2017. "Compound random measures and their use in Bayesian non-parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 525-545, March.
- Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019.
"Bayesian nonparametric sparse VAR models,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
- Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse VAR models," Papers 1608.02740, arXiv.org, revised Oct 2018.
- Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014.
"A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation,"
European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
- Galeano, Pedro & Ghosh, Pulak, 2010. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," DES - Working Papers. Statistics and Econometrics. WS ws103822, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2007.
"Inference for stochastic volatility model using time change transformations,"
MPRA Paper
5697, University Library of Munich, Germany.
- Kalogeropoulos, Konstantinos & Roberts, Gareth O. & Dellaportas, Petros, 2010. "Inference for stochastic volatility models using time change transformations," LSE Research Online Documents on Economics 31421, London School of Economics and Political Science, LSE Library.
- Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
- Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018.
"Bayesian Nonparametric Calibration and Combination of Predictive Distributions,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
- Roberto Casarin & Federico Bassetti & Francesco Ravazzolo, 2015. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Working Papers 2015:04, Department of Economics, University of Venice "Ca' Foscari".
- Richard F. MacLehose & David B. Dunson, 2010. "Bayesian Semiparametric Multiple Shrinkage," Biometrics, The International Biometric Society, vol. 66(2), pages 455-462, June.
- Sun Jiehuan & Warren Joshua L. & Zhao Hongyu, 2017. "A Bayesian semiparametric factor analysis model for subtype identification," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(2), pages 145-158, April.
- Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 76-97, March.
- Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
- Pelenis, Justinas, 2014. "Bayesian regression with heteroscedastic error density and parametric mean function," Journal of Econometrics, Elsevier, vol. 178(P3), pages 624-638.
- repec:cte:wsrepe:ws131211 is not listed on IDEAS
- Crespo Cuaresma, Jesus & Grün, Bettina & Hofmarcher, Paul & Humer, Stefan & Moser, Mathias, 2016. "Unveiling covariate inclusion structures in economic growth regressions using latent class analysis," European Economic Review, Elsevier, vol. 81(C), pages 189-202.
- Miller, Jeffrey W., 2019. "An elementary derivation of the Chinese restaurant process from Sethuraman’s stick-breaking process," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 112-117.
- Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.
- Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
- repec:cte:wsrepe:ws131009 is not listed on IDEAS
- Stefano Tonellato, 2019. "Bayesian nonparametric clustering as a community detection problem," Working Papers 2019: 20, Department of Economics, University of Venice "Ca' Foscari".
- Luis E. Nieto-Barajas & Peter Müller & Yuan Ji & Yiling Lu & Gordon B. Mills, 2012. "A Time-Series DDP for Functional Proteomics Profiles," Biometrics, The International Biometric Society, vol. 68(3), pages 859-868, September.
- Pelenis, Justinas, 2012. "Bayesian Semiparametric Regression," Economics Series 285, Institute for Advanced Studies.
- Zhang, Junyi & Dassios, Angelos, 2023. "Truncated two-parameter Poisson-Dirichlet approximation for Pitman-Yor process hierarchical models," LSE Research Online Documents on Economics 120294, London School of Economics and Political Science, LSE Library.
- Laura Liu, 2017. "Density Forecasts in Panel Models: A semiparametric Bayesian Perspective," PIER Working Paper Archive 17-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 28 Apr 2017.
- Cai, Bo & Meyer, Renate, 2011. "Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1260-1272, March.
- Im, Yunju & Tan, Aixin, 2021. "Bayesian subgroup analysis in regression using mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
- Boyuan Zhang, 2020. "Forecasting with Bayesian Grouped Random Effects in Panel Data," Papers 2007.02435, arXiv.org, revised Oct 2020.
- De Blasi, Pierpaolo & Martínez, Asael Fabian & Mena, Ramsés H. & Prünster, Igor, 2020. "On the inferential implications of decreasing weight structures in mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
- Sylvia Frühwirth-Schnatter & Gertraud Malsiner-Walli, 2019. "From here to infinity: sparse finite versus Dirichlet process mixtures in model-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 33-64, March.
- Isadora Antoniano-Villalobos & Stephen G. Walker, 2016. "A Nonparametric Model for Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 126-142, January.
- Liverani, Silvia & Hastie, David I. & Azizi, Lamiae & Papathomas, Michail & Richardson, Sylvia, 2015. "PReMiuM: An R Package for Profile Regression Mixture Models Using Dirichlet Processes," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i07).
- Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.
- Ungolo, Francesco & van den Heuvel, Edwin R., 2024. "A Dirichlet process mixture regression model for the analysis of competing risk events," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 95-113.
- Rebecca Graziani & Michele Guindani & Peter F. Thall, 2015. "Bayesian nonparametric estimation of targeted agent effects on biomarker change to predict clinical outcome," Biometrics, The International Biometric Society, vol. 71(1), pages 188-197, March.
- C. Yau & O. Papaspiliopoulos & G. O. Roberts & C. Holmes, 2011. "Bayesian non‐parametric hidden Markov models with applications in genomics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(1), pages 37-57, January.
- Moya, Blake & Walker, Stephen G., 2024. "Full uncertainty analysis for Bayesian nonparametric mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Huang, Yifan & Meng, Shengwang, 2020. "A Bayesian nonparametric model and its application in insurance loss prediction," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 84-94.
- Zhang, Junyi & Dassios, Angelos, 2024. "Posterior sampling from truncated Ferguson-Klass representation of normalised completely random measure mixtures," LSE Research Online Documents on Economics 122228, London School of Economics and Political Science, LSE Library.
- Tonellato, Stefano F., 2020. "Bayesian nonparametric clustering as a community detection problem," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Georgios Tsiotas, 2020. "On the use of power transformations in CAViaR models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 296-312, March.
- Mingan Yang & David Dunson, 2010. "Bayesian Semiparametric Structural Equation Models with Latent Variables," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 675-693, December.
- Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.