Truncated two-parameter Poisson-Dirichlet approximation for Pitman-Yor process hierarchical models
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
- François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
- Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014.
"Beta-product dependent Pitman–Yor processes for Bayesian inference,"
Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
- Federico Bassetti & Roberto Casarin & Fabrizio Leisen, 2013. "Beta-Product Dependent Pitman-Yor Processes for Bayesian Inference," Working Papers 2013:13, Department of Economics, University of Venice "Ca' Foscari".
- Dassios, Angelos & Zhang, Junyi, 2021. "Exact simulation of two-parameter Poisson-Dirichlet random variables," LSE Research Online Documents on Economics 107937, London School of Economics and Political Science, LSE Library.
- Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian nonparametric inference for species variety with a two parameter Poisson-Dirichlet process prior," Carlo Alberto Notebooks 123, Collegio Carlo Alberto.
- Giulia Cereda & Fabio Corradi & Cecilia Viscardi, 2023. "Learning the two parameters of the Poisson–Dirichlet distribution with a forensic application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 120-141, March.
- Yang Ni & Peter Müller & Yitan Zhu & Yuan Ji, 2018. "Heterogeneous reciprocal graphical models," Biometrics, The International Biometric Society, vol. 74(2), pages 606-615, June.
- Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Junyi Zhang & Angelos Dassios, 2024. "Truncated two‐parameter Poisson–Dirichlet approximation for Pitman–Yor process hierarchical models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 590-611, June.
- Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
- Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019.
"Bayesian nonparametric sparse VAR models,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
- Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse VAR models," Papers 1608.02740, arXiv.org, revised Oct 2018.
- Julyan Arbel & Stefano Favaro, 2021. "Approximating Predictive Probabilities of Gibbs-Type Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 496-519, February.
- Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
- Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
- Laura Liu, 2018.
"Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective,"
Papers
1805.04178, arXiv.org, revised Oct 2021.
- Laura Liu, 2020. "Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective," CAEPR Working Papers 2020-003, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu, 2018. "Density Forecasts in Panel Data Models : A Semiparametric Bayesian Perspective," Finance and Economics Discussion Series 2018-036, Board of Governors of the Federal Reserve System (U.S.).
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018.
"Bayesian Nonparametric Calibration and Combination of Predictive Distributions,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
- Roberto Casarin & Federico Bassetti & Francesco Ravazzolo, 2015. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Working Papers 2015:04, Department of Economics, University of Venice "Ca' Foscari".
- Stefano Tonellato, 2019. "Bayesian nonparametric clustering as a community detection problem," Working Papers 2019: 20, Department of Economics, University of Venice "Ca' Foscari".
- Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
- Boyuan Zhang, 2020. "Forecasting with Bayesian Grouped Random Effects in Panel Data," Papers 2007.02435, arXiv.org, revised Oct 2020.
- Jim E. Griffin & Fabrizio Leisen, 2017. "Compound random measures and their use in Bayesian non-parametrics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 525-545, March.
- Pierpaolo De Blasi & Ramsés H. Mena & Igor Prünster, 2022. "Asymptotic behavior of the number of distinct values in a sample from the geometric stick-breaking process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 143-165, February.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023.
"Forecasting with a panel Tobit model,"
Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," NBER Working Papers 26569, National Bureau of Economic Research, Inc.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2019. "Forecasting with a Panel Tobit Model," CAEPR Working Papers 2019-005, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
- Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2021. "Forecasting with a Panel Tobit Model," Papers 2110.14117, arXiv.org, revised Jul 2022.
- Igari, Ryosuke & Hoshino, Takahiro, 2018.
"A Bayesian data combination approach for repeated durations under unobserved missing indicators: Application to interpurchase-timing in marketing,"
Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 150-166.
- Ryosuke Igari & Takahiro Hoshino, 2017. "Bayesian Data Combination Approach for Repeated Durations under Unobserved Missing Indicators: Application to Interpurchase-Timing in Marketing," Keio-IES Discussion Paper Series 2017-015, Institute for Economics Studies, Keio University.
- Jin, Xin & Maheu, John M., 2016.
"Bayesian semiparametric modeling of realized covariance matrices,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
- Jin, Xin & Maheu, John M, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," MPRA Paper 60102, University Library of Munich, Germany.
- Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
- Giulia Cereda, 2017. "Impact of Model Choice on LR Assessment in Case of Rare Haplotype Match (Frequentist Approach)," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 230-248, March.
- Fisher, Mark & Jensen, Mark J., 2022.
"Bayesian nonparametric learning of how skill is distributed across the mutual fund industry,"
Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
- Mark Fisher & Mark J. Jensen & Paula A. Tkac, 2019. "Bayesian Nonparametric Learning of How Skill Is Distributed across the Mutual Fund Industry," FRB Atlanta Working Paper 2019-3, Federal Reserve Bank of Atlanta.
- Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
- repec:cte:wsrepe:ws131211 is not listed on IDEAS
- Abel Rodriguez & Enrique ter Horst, 2008. "Measuring expectations in options markets: An application to the SP500 index," Papers 0901.0033, arXiv.org.
More about this item
Keywords
Bayesian non-parametric statistics; Markov chain Monte Carlo; mixture model; Pitman-Yor process; two-parameter Poisson-Dirichlet distribution;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-11-27 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:120294. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.