IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v51y2024i2p590-611.html
   My bibliography  Save this article

Truncated two‐parameter Poisson–Dirichlet approximation for Pitman–Yor process hierarchical models

Author

Listed:
  • Junyi Zhang
  • Angelos Dassios

Abstract

In this paper, we construct an approximation to the Pitman–Yor process by truncating its two‐parameter Poisson–Dirichlet representation. The truncation is based on a decreasing sequence of random weights, thus having a lower approximation error compared to the popular truncated stick‐breaking process. We develop an exact simulation algorithm to sample from the approximation process and provide an alternative MCMC algorithm for the parameter regime where the exact simulation algorithm becomes slow. The effectiveness of the simulation algorithms is demonstrated by the estimation of the functionals of a Pitman–Yor process. Then we adapt the approximation process into a Pitman–Yor process mixture model and devise a blocked Gibbs sampler for posterior inference.

Suggested Citation

  • Junyi Zhang & Angelos Dassios, 2024. "Truncated two‐parameter Poisson–Dirichlet approximation for Pitman–Yor process hierarchical models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 590-611, June.
  • Handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:590-611
    DOI: 10.1111/sjos.12688
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12688
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
    2. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "A Bayesian Nonparametric Method for Prediction in EST Analysis," ICER Working Papers - Applied Mathematics Series 16-2007, ICER - International Centre for Economic Research.
    3. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    4. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian nonparametric inference for species variety with a two parameter Poisson-Dirichlet process prior," Carlo Alberto Notebooks 123, Collegio Carlo Alberto.
    5. Giulia Cereda & Fabio Corradi & Cecilia Viscardi, 2023. "Learning the two parameters of the Poisson–Dirichlet distribution with a forensic application," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 120-141, March.
    6. Yang Ni & Peter Müller & Yitan Zhu & Yuan Ji, 2018. "Heterogeneous reciprocal graphical models," Biometrics, The International Biometric Society, vol. 74(2), pages 606-615, June.
    7. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Junyi & Dassios, Angelos, 2023. "Truncated two-parameter Poisson-Dirichlet approximation for Pitman-Yor process hierarchical models," LSE Research Online Documents on Economics 120294, London School of Economics and Political Science, LSE Library.
    2. Lawless Caroline & Arbel Julyan, 2019. "A simple proof of Pitman–Yor’s Chinese restaurant process from its stick-breaking representation," Dependence Modeling, De Gruyter, vol. 7(1), pages 45-52, March.
    3. Julyan Arbel & Stefano Favaro, 2021. "Approximating Predictive Probabilities of Gibbs-Type Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 496-519, February.
    4. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.
    5. Cesari, Oriana & Favaro, Stefano & Nipoti, Bernardo, 2014. "Posterior analysis of rare variants in Gibbs-type species sampling models," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 79-98.
    6. Giulia Cereda, 2017. "Impact of Model Choice on LR Assessment in Case of Rare Haplotype Match (Frequentist Approach)," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 230-248, March.
    7. repec:dau:papers:123456789/13437 is not listed on IDEAS
    8. Weixuan Zhu & Fabrizio Leisen, 2015. "A multivariate extension of a vector of two-parameter Poisson-Dirichlet processes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 89-105, March.
    9. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    10. Stefano Favaro & Shui Feng & Fuqing Gao, 2018. "Moderate Deviations for Ewens-Pitman Sampling Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 330-341, August.
    11. Sonia Petrone & Stefano Rizzelli & Judith Rousseau & Catia Scricciolo, 2014. "Empirical Bayes methods in classical and Bayesian inference," METRON, Springer;Sapienza Università di Roma, vol. 72(2), pages 201-215, August.
    12. Emanuele Dolera, 2022. "Asymptotic Efficiency of Point Estimators in Bayesian Predictive Inference," Mathematics, MDPI, vol. 10(7), pages 1-27, April.
    13. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A New Estimator of the Discovery Probability," Biometrics, The International Biometric Society, vol. 68(4), pages 1188-1196, December.
    14. Stefano Favaro & Bernardo Nipoti, 2014. "Discussion of “On simulation and properties of the stable law” by L. Devroye and L. James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 365-369, August.
    15. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A new estimator of the discovery probability," DEM Working Papers Series 007, University of Pavia, Department of Economics and Management.
    16. Emanuele Dolera & Stefano Favaro, 2021. "A Compound Poisson Perspective of Ewens–Pitman Sampling Model," Mathematics, MDPI, vol. 9(21), pages 1-12, November.
    17. Stefano Favaro & Antonio Lijoi & Igor Prunster, 2011. "Asymptotics for a Bayesian nonparametric estimator of species richness," Quaderni di Dipartimento 144, University of Pavia, Department of Economics and Quantitative Methods.
    18. Pierpaolo De Blasi & Ramsés H. Mena & Igor Prünster, 2022. "Asymptotic behavior of the number of distinct values in a sample from the geometric stick-breaking process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 143-165, February.
    19. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    20. Pati, Debdeep & Dunson, David B. & Tokdar, Surya T., 2013. "Posterior consistency in conditional distribution estimation," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 456-472.
    21. repec:cte:wsrepe:ws131211 is not listed on IDEAS
    22. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:51:y:2024:i:2:p:590-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.