Bayesian Semiparametric Structural Equation Models with Latent Variables
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-010-9174-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Omiros Papaspiliopoulos & Gareth O. Roberts, 2008. "Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models," Biometrika, Biometrika Trust, vol. 95(1), pages 169-186.
- Sik-Yum Lee & Ye-Mao Xia, 2006. "Maximum Likelihood Methods in Treating Outliers and Symmetrically Heavy-Tailed Distributions for Nonlinear Structural Equation Models with Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 565-585, September.
- Hong-Tu Zhu & Sik-Yum Lee, 2001. "A Bayesian analysis of finite mixtures in the LISREL model," Psychometrika, Springer;The Psychometric Society, vol. 66(1), pages 133-152, March.
- Asim Ansari & Raghuram Iyengar, 2006. "Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 631-657, December.
- Sik-Yum Lee, 2006. "Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 71(3), pages 541-564, September.
- Deborah Burr & Hani Doss, 2005. "A Bayesian Semiparametric Model for Random-Effects Meta-Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 242-251, March.
- Ishwaran H. & Takahara G., 2002. "Independent and Identically Distributed Monte Carlo Algorithms for Semiparametric Linear Mixed Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1154-1166, December.
- McLachlan, G.J. & Bean, R.W. & Ben-Tovim Jones, L., 2007. "Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(11), pages 5327-5338, July.
- Ludwig Fahrmeir & Alexander Raach, 2007. "A Bayesian Semiparametric Latent Variable Model for Mixed Responses," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 327-346, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Piotr Tarka, 2018. "An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(1), pages 313-354, January.
- Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
- Sally Paganin & Christopher J. Paciorek & Claudia Wehrhahn & Abel RodrÃguez & Sophia Rabe-Hesketh & Perry de Valpine, 2023. "Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 48(2), pages 147-188, April.
- Bao, Junshu & Hanson, Timothy E., 2016. "A mean-constrained finite mixture of normals model," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 93-99.
- Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Yang Li & Asim Ansari, 2014. "A Bayesian Semiparametric Approach for Endogeneity and Heterogeneity in Choice Models," Management Science, INFORMS, vol. 60(5), pages 1161-1179, May.
- Ernesto San Martín & Alejandro Jara & Jean-Marie Rolin & Michel Mouchart, 2011. "On the Bayesian Nonparametric Generalization of IRT-Type Models," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 385-409, July.
- Xin-Yuan Song & Zhao-Hua Lu & Jing-Heng Cai & Edward Ip, 2013. "A Bayesian Modeling Approach for Generalized Semiparametric Structural Equation Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 624-647, October.
- Kees Montfort & Johan Oud, 2015. "Book Review," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 257-258, March.
- Kim, Gwangsu & Choi, Taeryon, 2019. "Asymptotic properties of nonparametric estimation and quantile regression in Bayesian structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 68-82.
- Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
- Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
- Sylvie Tchumtchoua & Dipak Dey, 2012. "Modeling Associations Among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 670-692, October.
- Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
- Mohsen Maleki & Darren Wraith, 2019. "Mixtures of multivariate restricted skew-normal factor analyzer models in a Bayesian framework," Computational Statistics, Springer, vol. 34(3), pages 1039-1053, September.
- Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.
- Sun Jiehuan & Warren Joshua L. & Zhao Hongyu, 2017. "A Bayesian semiparametric factor analysis model for subtype identification," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(2), pages 145-158, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xia, Ye-Mao & Tang, Nian-Sheng, 2019. "Bayesian analysis for mixture of latent variable hidden Markov models with multivariate longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 190-211.
- Song, Xin-Yuan & Chen, Fei & Lu, Zhao-Hua, 2013. "A Bayesian semiparametric dynamic two-level structural equation model for analyzing non-normal longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 87-108.
- Ke-Hai Yuan & Zhiyong Zhang, 2012. "Robust Structural Equation Modeling with Missing Data and Auxiliary Variables," Psychometrika, Springer;The Psychometric Society, vol. 77(4), pages 803-826, October.
- Xinyuan Song & Yemao Xia & Hongtu Zhu, 2017. "Hidden Markov latent variable models with multivariate longitudinal data," Biometrics, The International Biometric Society, vol. 73(1), pages 313-323, March.
- Ando, Tomohiro, 2009. "Bayesian factor analysis with fat-tailed factors and its exact marginal likelihood," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1717-1726, September.
- Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
- Niansheng Tang & Sy-Miin Chow & Joseph G. Ibrahim & Hongtu Zhu, 2017. "Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 875-903, December.
- Yang, Mingan & Dunson, David B. & Baird, Donna, 2010. "Semiparametric Bayes hierarchical models with mean and variance constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2172-2186, September.
- Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.
- James C. Slaughter & Amy H. Herring & John M. Thorp, 2009. "A Bayesian Latent Variable Mixture Model for Longitudinal Fetal Growth," Biometrics, The International Biometric Society, vol. 65(4), pages 1233-1242, December.
- Fisher, Mark & Jensen, Mark J., 2022.
"Bayesian nonparametric learning of how skill is distributed across the mutual fund industry,"
Journal of Econometrics, Elsevier, vol. 230(1), pages 131-153.
- Mark Fisher & Mark J. Jensen & Paula A. Tkac, 2019. "Bayesian Nonparametric Learning of How Skill Is Distributed across the Mutual Fund Industry," FRB Atlanta Working Paper 2019-3, Federal Reserve Bank of Atlanta.
- Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
- Asim Ansari & Ricardo Montoya & Oded Netzer, 2012. "Dynamic learning in behavioral games: A hidden Markov mixture of experts approach," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 475-503, December.
- Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
- Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014.
"A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation,"
European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
- Galeano, Pedro & Ghosh, Pulak, 2010. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," DES - Working Papers. Statistics and Econometrics. WS ws103822, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Fu, Ying-Zi & Tang, Nian-Sheng & Chen, Xing, 2009. "Local influence analysis of nonlinear structural equation models with nonignorable missing outcomes from reproductive dispersion models," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3671-3684, August.
- Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
- Richard F. MacLehose & David B. Dunson, 2010. "Bayesian Semiparametric Multiple Shrinkage," Biometrics, The International Biometric Society, vol. 66(2), pages 455-462, June.
- Ruixin Guo & Hongtu Zhu & Sy-Miin Chow & Joseph G. Ibrahim, 2012. "Bayesian Lasso for Semiparametric Structural Equation Models," Biometrics, The International Biometric Society, vol. 68(2), pages 567-577, June.
- Cai, Jing-Heng & Song, Xin-Yuan & Lam, Kwok-Hap & Ip, Edward Hak-Sing, 2011. "A mixture of generalized latent variable models for mixed mode and heterogeneous data," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2889-2907, November.
More about this item
Keywords
Dirichlet process; factor analysis; latent class; latent trait; mixture model; nonparametric Bayes; parameter expansion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:75:y:2010:i:4:p:675-693. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.