My bibliography
Save this item
Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Nan & Gong, Jing & Huang, Zuohua, 2016. "Review on the production methods and fundamental combustion characteristics of furan derivatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1189-1211.
- Zhufan Zou & Zhenjie Yu & Weixiang Guan & Yanfang Liu & Yumin Yao & Yang Han & Guangyi Li & Aiqin Wang & Yu Cong & Xinmiao Liang & Tao Zhang & Ning Li, 2024. "Selective production of methylindan and tetralin with xylose or hemicellulose," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
- Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2013. "Gaseous and particulate matter emissions of biofuel blends in dual-injection compared to direct-injection and port injection," Applied Energy, Elsevier, vol. 105(C), pages 252-261.
- Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
- Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
- Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
- Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
- Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
- Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
- Qianqian Mu & Fuwu Yan & Jizhou Zhang & Lei Xu & Yu Wang, 2021. "Experimental and Numerical Study on the Sooting Behaviors of Furanic Biofuels in Laminar Counterflow Diffusion Flames," Energies, MDPI, vol. 14(18), pages 1-16, September.
- Ma, Xiao & Xu, Hongming & Jiang, Changzhao & Shuai, Shijin, 2014. "Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine," Applied Energy, Elsevier, vol. 122(C), pages 247-260.
- Anqing Zheng & Liqun Jiang & Zengli Zhao & Zhen Huang & Kun Zhao & Guoqiang Wei & Haibin Li, 2017. "Catalytic fast pyrolysis of lignocellulosic biomass for aromatic production: chemistry, catalyst and process," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(3), May.
- Ivan Udalov, 2021. "The Transition to Renewable Energy Sources as a Threat to Resource Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 460-467.
- Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
- Zhou, Feng & Wang, Jigang & Zhou, Xincong & Qiao, Xinqi & Wen, Xiaofei, 2021. "Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet," Energy, Elsevier, vol. 224(C).
- Watt, G.D., 2014. "A new future for carbohydrate fuel cells," Renewable Energy, Elsevier, vol. 72(C), pages 99-104.
- Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
- Hrnčič, Maša Knez & Kravanja, Gregor & Knez, Željko, 2016. "Hydrothermal treatment of biomass for energy and chemicals," Energy, Elsevier, vol. 116(P2), pages 1312-1322.
- Wang, Tiejun & Li, Kai & Liu, Qiying & Zhang, Qing & Qiu, Songbai & Long, Jinxing & Chen, Lungang & Ma, Longlong & Zhang, Qi, 2014. "Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase," Applied Energy, Elsevier, vol. 136(C), pages 775-780.
- Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
- Cui, Mei & Wu, Zhongjie & Huang, Renliang & Qi, Wei & Su, Rongxin & He, Zhimin, 2018. "Integrating chromium-based ceramic and acid catalysis to convert glucose into 5-hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 125(C), pages 327-333.
- Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
- Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
- Haifeng Liu & Xichang Wang & Diping Zhang & Fang Dong & Xinlu Liu & Yong Yang & Haozhong Huang & Yang Wang & Qianlong Wang & Zunqing Zheng, 2019. "Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle," Energies, MDPI, vol. 12(10), pages 1-21, May.
- Wu, Xuesong & Daniel, Ritchie & Tian, Guohong & Xu, Hongming & Huang, Zuohua & Richardson, Dave, 2011. "Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends," Applied Energy, Elsevier, vol. 88(7), pages 2305-2314, July.
- Liu, Haifeng & Xu, Jia & Zheng, Zunqing & Li, Shanju & Yao, Mingfa, 2013. "Effects of fuel properties on combustion and emissions under both conventional and low temperature combustion mode fueling 2,5-dimethylfuran/diesel blends," Energy, Elsevier, vol. 62(C), pages 215-223.
- Harish, B.S & Janaki Ramaiah, M. & Babu Uppuluri, Kiran, 2015. "Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 533-547.
- Wang, Shuai & Eberhardt, Thomas L. & Guo, Dayi & Feng, Junfeng & Pan, Hui, 2022. "Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system," Renewable Energy, Elsevier, vol. 190(C), pages 1-10.
- Watt, Gerald D. & Hansen, Dane & Dodson, Daniel & Andrus, Merritt & Wheeler, Dean, 2011. "Electrical energy from carbohydrate oxidation during viologen-catalyzed O2-oxidation: Mechanistic insights," Renewable Energy, Elsevier, vol. 36(5), pages 1523-1528.
- Xenia Tabachkova, 2021. "Consequences of Oil Supply and Demand on the Electricity Market: Coronavirus Effect," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 573-580.
- Kirtika Kohli & Ravindra Prajapati & Brajendra K. Sharma, 2019. "Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries," Energies, MDPI, vol. 12(2), pages 1-40, January.
- Viar, Nerea & Requies, Jesús M. & Agirre, Ion & Iriondo, Aitziber & Arias, Pedro L., 2019. "Furanic biofuels production from biomass using Cu-based heterogeneous catalysts," Energy, Elsevier, vol. 172(C), pages 531-544.
- Juan Carlos Serrano-Ruiz & Rafael Luque & Juan Manual Campelo & Antonio A. Romero, 2012. "Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals," Challenges, MDPI, vol. 3(2), pages 1-19, July.
- Zhang, Qing & Wang, Tiejun & Li, Bing & Jiang, Ting & Ma, Longlong & Zhang, Xinghua & Liu, Qiying, 2012. "Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalysts," Applied Energy, Elsevier, vol. 97(C), pages 509-513.
- Tran, Luc Sy & Sirjean, Baptiste & Glaude, Pierre-Alexandre & Fournet, René & Battin-Leclerc, Frédérique, 2012. "Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels," Energy, Elsevier, vol. 43(1), pages 4-18.
- Shuang Xiang & Lin Dong & Zhi-Qiang Wang & Xue Han & Luke L. Daemen & Jiong Li & Yongqiang Cheng & Yong Guo & Xiaohui Liu & Yongfeng Hu & Anibal J. Ramirez-Cuesta & Sihai Yang & Xue-Qing Gong & Yanqin, 2022. "A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Yan, Puxiang & Wang, Haiyong & Liao, Yuhe & Wang, Chenguang, 2023. "Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
- Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
- Nguyen, Long Thanh & Doan, Vinh Thanh Chau & Nguyen, Trinh Hao & Phan, Ha Bich & Pham, Viet Van & Dang, Chinh Van & Tran, Phuong Hoang, 2024. "One-pot aerobic conversion of fructose to 2,5-diformylfuran using silver-decorated carbon materials," Renewable Energy, Elsevier, vol. 221(C).
- Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
- Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2012. "Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine," Applied Energy, Elsevier, vol. 98(C), pages 59-68.
- Engin Kocaturk & Tufan Salan & Orhan Ozcelik & Mehmet Hakkı Alma & Zeki Candan, 2023. "Recent Advances in Lignin-Based Biofuel Production," Energies, MDPI, vol. 16(8), pages 1-17, April.
- Ya, Yuchen & Nie, Xiaokang & Han, Weiwei & Xiang, Longkai & Gu, Mingyan & Chu, Huaqiang, 2020. "Effects of 2, 5–dimethylfuran/ethanol addition on soot formation in n-heptane/iso-octane/air coflow diffusion flames," Energy, Elsevier, vol. 210(C).
- Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.