IDEAS home Printed from https://ideas.repec.org/a/gam/jchals/v3y2012i2p114-132d18858.html
   My bibliography  Save this article

Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals

Author

Listed:
  • Juan Carlos Serrano-Ruiz

    (Departamento de Química Orgánica, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Córdoba E-14014, Spain)

  • Rafael Luque

    (Departamento de Química Orgánica, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Córdoba E-14014, Spain)

  • Juan Manual Campelo

    (Departamento de Química Orgánica, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Córdoba E-14014, Spain)

  • Antonio A. Romero

    (Departamento de Química Orgánica, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario CeiA3, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Córdoba E-14014, Spain)

Abstract

Continuous flow chemical processes offer several advantages as compared to batch chemistries. These are particularly relevant in the case of heterogeneously catalyzed transformations of biomass-derived platform molecules into valuable chemicals and fuels. This work is aimed to provide an overview of key continuous flow processes developed to date dealing with a series of transformations of platform chemicals including alcohols, furanics, organic acids and polyols using a wide range of heterogeneous catalysts based on supported metals, solid acids and bifunctional (metal + acidic) materials.

Suggested Citation

  • Juan Carlos Serrano-Ruiz & Rafael Luque & Juan Manual Campelo & Antonio A. Romero, 2012. "Continuous-Flow Processes in Heterogeneously Catalyzed Transformations of Biomass Derivatives into Fuels and Chemicals," Challenges, MDPI, vol. 3(2), pages 1-19, July.
  • Handle: RePEc:gam:jchals:v:3:y:2012:i:2:p:114-132:d:18858
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2078-1547/3/2/114/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2078-1547/3/2/114/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuriy Román-Leshkov & Christopher J. Barrett & Zhen Y. Liu & James A. Dumesic, 2007. "Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates," Nature, Nature, vol. 447(7147), pages 982-985, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jae Hoon & Hwang, Hyewon & Choi, Joon Weon, 2018. "Effects of transition metals on hydrothermal liquefaction of empty fruit bunches (EFB) for conversion to biofuel and valuable chemicals," Energy, Elsevier, vol. 162(C), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Nguyen, Long Thanh & Doan, Vinh Thanh Chau & Nguyen, Trinh Hao & Phan, Ha Bich & Pham, Viet Van & Dang, Chinh Van & Tran, Phuong Hoang, 2024. "One-pot aerobic conversion of fructose to 2,5-diformylfuran using silver-decorated carbon materials," Renewable Energy, Elsevier, vol. 221(C).
    3. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    4. Chen, Guisheng & Shen, Yinggang & Zhang, Quanchang & Yao, Mingfa & Zheng, Zunqing & Liu, Haifeng, 2013. "Experimental study on combustion and emission characteristics of a diesel engine fueled with 2,5-dimethylfuran–diesel, n-butanol–diesel and gasoline–diesel blends," Energy, Elsevier, vol. 54(C), pages 333-342.
    5. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2013. "Gaseous and particulate matter emissions of biofuel blends in dual-injection compared to direct-injection and port injection," Applied Energy, Elsevier, vol. 105(C), pages 252-261.
    6. Zhou, Feng & Wang, Jigang & Zhou, Xincong & Qiao, Xinqi & Wen, Xiaofei, 2021. "Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet," Energy, Elsevier, vol. 224(C).
    7. Chen, Guisheng & Di, Lei & Zhang, Quanchang & Zheng, Zunqing & Zhang, Wei, 2015. "Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines," Energy, Elsevier, vol. 93(P1), pages 284-293.
    8. Hu, Lei & Lin, Lu & Wu, Zhen & Zhou, Shouyong & Liu, Shijie, 2017. "Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 230-257.
    9. Ma, Xiao & Xu, Hongming & Jiang, Changzhao & Shuai, Shijin, 2014. "Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine," Applied Energy, Elsevier, vol. 122(C), pages 247-260.
    10. Ivan Udalov, 2021. "The Transition to Renewable Energy Sources as a Threat to Resource Economies," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 460-467.
    11. Haifeng Liu & Xichang Wang & Diping Zhang & Fang Dong & Xinlu Liu & Yong Yang & Haozhong Huang & Yang Wang & Qianlong Wang & Zunqing Zheng, 2019. "Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle," Energies, MDPI, vol. 12(10), pages 1-21, May.
    12. Xenia Tabachkova, 2021. "Consequences of Oil Supply and Demand on the Electricity Market: Coronavirus Effect," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 573-580.
    13. Kirtika Kohli & Ravindra Prajapati & Brajendra K. Sharma, 2019. "Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries," Energies, MDPI, vol. 12(2), pages 1-40, January.
    14. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2012. "Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine," Applied Energy, Elsevier, vol. 98(C), pages 59-68.
    15. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    16. Tran, Luc Sy & Sirjean, Baptiste & Glaude, Pierre-Alexandre & Fournet, René & Battin-Leclerc, Frédérique, 2012. "Progress in detailed kinetic modeling of the combustion of oxygenated components of biofuels," Energy, Elsevier, vol. 43(1), pages 4-18.
    17. Watt, G.D., 2014. "A new future for carbohydrate fuel cells," Renewable Energy, Elsevier, vol. 72(C), pages 99-104.
    18. Wang, Haiyong & Zhu, Changhui & Li, Dan & Liu, Qiying & Tan, Jin & Wang, Chenguang & Cai, Chiliu & Ma, Longlong, 2019. "Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 227-247.
    19. Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
    20. Engin Kocaturk & Tufan Salan & Orhan Ozcelik & Mehmet Hakkı Alma & Zeki Candan, 2023. "Recent Advances in Lignin-Based Biofuel Production," Energies, MDPI, vol. 16(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jchals:v:3:y:2012:i:2:p:114-132:d:18858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.