IDEAS home Printed from https://ideas.repec.org/r/nat/natcli/v2y2012i6d10.1038_nclimate1451.html
   My bibliography  Save this item

Do alternative energy sources displace fossil fuels?

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Figaj, Rafał, 2021. "Performance assessment of a renewable micro-scale trigeneration system based on biomass steam cycle, wind turbine, photovoltaic field," Renewable Energy, Elsevier, vol. 177(C), pages 193-208.
  2. Jared B. Fitzgerald & Daniel Auerbach, 2016. "The Political Economy of the Water Footprint: A Cross-National Analysis of Ecologically Unequal Exchange," Sustainability, MDPI, vol. 8(12), pages 1-16, December.
  3. Adrian Muller & Eduardo Aguilera & Colin Skinner & Andreas Gattinger, 2016. "Does certified organic farming reduce greenhouse gas emissions from agricultural production? Comment on the McGee study," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 33(4), pages 943-947, December.
  4. Luis Diaz-Serrano & Giorgos Kallis, 2022. "Political leaders with professional background in business and climate outcomes," Climatic Change, Springer, vol. 172(1), pages 1-20, May.
  5. Boyce, Scott & He, Fangliang, 2022. "Political governance, socioeconomics, and weather influence provincial GHG emissions in Canada," Energy Policy, Elsevier, vol. 168(C).
  6. Dyrstad, Jan Morten & Skonhoft, Anders & Christensen, Magnus Quist & Ødegaard, Eirik Theie, 2019. "Does economic growth eat up environmental improvements? Electricity production and fossil fuel emission in OECD countries 1980–2014," Energy Policy, Elsevier, vol. 125(C), pages 103-109.
  7. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
  8. Wang, Zhen & Huang, Yaoxuan & Ankrah, Victoria & Dai, Jiapeng, 2023. "Greening the knowledge-based economies: Harnessing natural resources and innovation in information and communication technologies for green growth," Resources Policy, Elsevier, vol. 86(PA).
  9. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Hafiz Waqas Kamran, 2021. "Climate Change and Energy Consumption Patterns in Thailand: Time Trends During 1988-2013," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 571-576.
  10. André Gaspar Ciepliski & Simone D'Alessandro & Tiziano Distefano & Pietro Guarnieri, 2020. "Coupling environmental transition and social prosperity: a scenario-analysis of the Italian case," Discussion Papers 2020/256, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
  11. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
  12. van den Bergh, Jeroen, 2023. "Climate policy versus growth concerns: Suggestions for economic research and communication," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
  13. Xue, Bing & Ma, Zhixiao & Geng, Yong & Heck, Peter & Ren, Wanxia & Tobias, Mario & Maas, Achim & Jiang, Ping & Puppim de Oliveira, Jose A. & Fujita, Tsuyoshi, 2015. "A life cycle co-benefits assessment of wind power in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 338-346.
  14. Ajayi, Temitope & Awolayo, Adedapo & Gomes, Jorge S. & Parra, Humberto & Hu, Jialiang, 2019. "Large scale modeling and assessment of the feasibility of CO2 storage onshore Abu Dhabi," Energy, Elsevier, vol. 185(C), pages 653-670.
  15. Matthew Houser, 2022. "Does adopting a nitrogen best management practice reduce nitrogen fertilizer rates?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(1), pages 79-94, March.
  16. Bentsen, Niclas Scott, 2017. "Carbon debt and payback time – Lost in the forest?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1211-1217.
  17. Rüter, Sebastian & Werner, Frank & Forsell, Nicklas & Prins, Christopher & Vial, Estelle & Levet, Anne-Laure, 2016. "ClimWood2030 - Climate benefits of material substitution by forest biomass and harvested wood products: Perspective 2030. Final report," Thünen Reports 42, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
  18. Xiangwen Xue & Qi Zhang & Xinyu Cai & Vadim V. Ponkratov, 2023. "Multi-Criteria Decision Analysis for Evaluating the Effectiveness of Alternative Energy Sources in China," Sustainability, MDPI, vol. 15(10), pages 1-14, May.
  19. Li, Ding & Gao, Ming & Hou, Wenxuan & Song, Malin & Chen, Jiandong, 2020. "A modified and improved method to measure economy-wide carbon rebound effects based on the PDA-MMI approach," Energy Policy, Elsevier, vol. 147(C).
  20. Sandra George O’Neil, 2021. "Community obstacles to large scale solar: NIMBY and renewables," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 11(1), pages 85-92, March.
  21. James R. Elliott & Matthew Thomas Clement, 2014. "Urbanization and Carbon Emissions: A Nationwide Study of Local Countervailing Effects in the United States," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 795-816, September.
  22. Rafał Figaj & Krzysztof Sornek & Szymon Podlasek & Maciej Żołądek, 2020. "Operation and Sensitivity Analysis of a Micro-Scale Hybrid Trigeneration System Integrating a Water Steam Cycle and Wind Turbine under Different Reference Scenarios," Energies, MDPI, vol. 13(21), pages 1-23, October.
  23. Hurmekoski, Elias & Kunttu, Janni & Heinonen, Tero & Pukkala, Timo & Peltola, Heli, 2023. "Does expanding wood use in construction and textile markets contribute to climate change mitigation?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
  24. Cieplinski, A. & D’Alessandro, S. & Distefano, T. & Guarnieri, P., 2021. "Coupling environmental transition and social prosperity: a scenario-analysis of the Italian case," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 265-278.
  25. Ryan Gunderson & Brian Petersen & Diana Stuart, 2018. "A Critical Examination of Geoengineering: Economic and Technological Rationality in Social Context," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
  26. Liddle, Brantley & Sadorsky, Perry, 2017. "How much does increasing non-fossil fuels in electricity generation reduce carbon dioxide emissions?," Applied Energy, Elsevier, vol. 197(C), pages 212-221.
  27. Modupe Oluyemisi Oyebanji & Rui Alexandre Castanho & Sema Yilmaz Genc & Dervis Kirikkaleli, 2022. "Patents on Environmental Technologies and Environmental Sustainability in Spain," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
  28. Julius McGee, 2015. "Does certified organic farming reduce greenhouse gas emissions from agricultural production?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 255-263, June.
  29. Mohd Afjal & Chinnadurai Kathiravan & Leo Paul Dana & Chitra Devi Nagarajan, 2023. "The Dynamic Impact of Financial Technology and Energy Consumption on Environmental Sustainability," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
  30. Ofori-Sasu, Daniel & Adu-Darko, Eunice & Asamoah, Michael Effah & Abor, Joshua Yindenaba, 2023. "Oil rents, trade environment and financial development: An international evidence," Resources Policy, Elsevier, vol. 82(C).
  31. Sweidan, Osama D. & Alwaked, Ahmed A., 2016. "Economic development and the energy intensity of human well-being: Evidence from the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1363-1369.
  32. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
  33. Mariola Piłatowska & Andrzej Geise & Aneta Włodarczyk, 2020. "The Effect of Renewable and Nuclear Energy Consumption on Decoupling Economic Growth from CO 2 Emissions in Spain," Energies, MDPI, vol. 13(9), pages 1-18, April.
  34. Julius Alexander McGee, 2016. "Does certified organic farming reduce greenhouse gas emissions from agricultural production? Reply to Muller et al," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 33(4), pages 949-952, December.
  35. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
  36. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
  37. Axel Franzen & Sebastian Mader, 2016. "Predictors of national CO2 emissions: do international commitments matter?," Climatic Change, Springer, vol. 139(3), pages 491-502, December.
  38. Jorgenson, Andrew K. & Alekseyko, Alina & Giedraitis, Vincentas, 2014. "Energy consumption, human well-being and economic development in central and eastern European nations: A cautionary tale of sustainability," Energy Policy, Elsevier, vol. 66(C), pages 419-427.
  39. Mastini, Riccardo & Kallis, Giorgos & Hickel, Jason, 2021. "A Green New Deal without growth?," Ecological Economics, Elsevier, vol. 179(C).
  40. Jung, Sungyup & Kwon, Dohee & Park, Young-Kwon & Lee, Kyun Ho & Kwon, Eilhann E., 2020. "Power generation using rice husk derived fuels from CO2-assisted catalytic pyrolysis over Co/Al2O3," Energy, Elsevier, vol. 206(C).
  41. Busch, Henner & Ruggiero, Salvatore & Isakovic, Aljosa & Hansen, Teis, 2021. "Policy challenges to community energy in the EU: A systematic review of the scientific literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  42. He, Zhixia & Wang, Bin & Zhang, Bo & Feng, Huan & Kandasamy, Sabariswaran & Chen, Haitao, 2020. "Synergistic effect of hydrothermal Co-liquefaction of Spirulina platensis and Lignin: Optimization of operating parameters by response surface methodology," Energy, Elsevier, vol. 201(C).
  43. Mihaela Simionescu & Yuriy Bilan & Stanisław Gędek & Dalia Streimikiene, 2019. "The Effects of Greenhouse Gas Emissions on Cereal Production in the European Union," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
  44. Elias Hurmekoski & Juulia Suuronen & Lassi Ahlvik & Janni Kunttu & Tanja Myllyviita, 2022. "Substitution impacts of wood‐based textile fibers: Influence of market assumptions," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1564-1577, August.
  45. Bakhtyar, B. & Fudholi, A. & Hassan, Kabir & Azam, M. & Lim, C.H. & Chan, N.W. & Sopian, K., 2017. "Review of CO2 price in Europe using feed-in tariff rates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 685-691.
  46. Giuntoli, J. & Searle, S. & Jonsson, R. & Agostini, A. & Robert, N. & Amaducci, S. & Marelli, L. & Camia, A., 2020. "Carbon accounting of bioenergy and forest management nexus. A reality-check of modeling assumptions and expectations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  47. Ryan P. Thombs, 2018. "Has the relationship between non-fossil fuel energy sources and CO2 emissions changed over time? A cross-national study, 2000–2013," Climatic Change, Springer, vol. 148(4), pages 481-490, June.
  48. Michael Jakob & William F. Lamb & Jan Christoph Steckel & Christian Flachsland & Ottmar Edenhofer, 2020. "Understanding different perspectives on economic growth and climate policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(6), November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.