Synergistic effect of hydrothermal Co-liquefaction of Spirulina platensis and Lignin: Optimization of operating parameters by response surface methodology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117550
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
- Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
- Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
- Richard York, 2012. "Do alternative energy sources displace fossil fuels?," Nature Climate Change, Nature, vol. 2(6), pages 441-443, June.
- Reddy, Harvind Kumar & Muppaneni, Tapaswy & Ponnusamy, Sundaravadivelnathan & Sudasinghe, Nilusha & Pegallapati, Ambica & Selvaratnam, Thinesh & Seger, Mark & Dungan, Barry & Nirmalakhandan, Nagamany , 2016. "Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp," Applied Energy, Elsevier, vol. 165(C), pages 943-951.
- Hallenbeck, P.C. & Grogger, M. & Mraz, M. & Veverka, D., 2016. "Solar biofuels production with microalgae," Applied Energy, Elsevier, vol. 179(C), pages 136-145.
- Yang, Jie & He, Quan (Sophia) & Corscadden, Kenneth & Niu, Haibo & Lin, Jianan & Astatkie, Tess, 2019. "Advanced models for the prediction of product yield in hydrothermal liquefaction via a mixture design of biomass model components coupled with process variables," Applied Energy, Elsevier, vol. 233, pages 906-915.
- Suali, Emma & Sarbatly, Rosalam, 2012. "Conversion of microalgae to biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4316-4342.
- Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
- Dimitriadis, Athanasios & Bezergianni, Stella, 2017. "Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 113-125.
- Zhang, Tian-Yuan & Hu, Hong-Ying & Wu, Yin-Hu & Zhuang, Lin-Lan & Xu, Xue-Qiao & Wang, Xiao-Xiong & Dao, Guo-Hua, 2016. "Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1602-1614.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
- Duan, Yibing & He, Zhixia & Zhang, Bo & Wang, Bin & Zhang, Feiyang, 2022. "Synergistic effect of hydrothermal co-liquefaction of Camellia oleifera Abel and Spirulina platensis: Parameters optimization and product characteristics," Renewable Energy, Elsevier, vol. 186(C), pages 26-34.
- Wu, Haijun & Shakeel, Usama & Zhang, Quan & Zhang, Kai & Xu, Xia & Yuan, Yamei & Xu, Jian, 2022. "Catalytic degradation of poplar by Na2CO3 and Na2CO3/Fe under various hydrothermal liquefaction processes," Energy, Elsevier, vol. 259(C).
- Yuan, Zhilong & Jia, Guangchao & Cui, Xin & Song, Xueping & Wang, Cuiping & Zhao, Peitao & Ragauskas, Art J., 2022. "Effects of temperature and time on supercritical methanol Co-Liquefaction of rice straw and linear low-density polyethylene wastes," Energy, Elsevier, vol. 245(C).
- Wang, Bin & He, Zhixia & Zhang, Bo & Duan, Yibing, 2021. "Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil," Energy, Elsevier, vol. 230(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yan, Shuo & Xia, Dehong & Zhang, Xinru & Liu, Xiangjun, 2022. "Synergistic mechanism of enhanced biocrude production during hydrothermal co-liquefaction of biomass model components: A molecular dynamics simulation," Energy, Elsevier, vol. 255(C).
- Wang, Bin & He, Zhixia & Zhang, Bo & Duan, Yibing, 2021. "Study on hydrothermal liquefaction of spirulina platensis using biochar based catalysts to produce bio-oil," Energy, Elsevier, vol. 230(C).
- Hu, Yulin & Gong, Mengyue & Feng, Shanghuan & Xu, Chunbao (Charles) & Bassi, Amarjeet, 2019. "A review of recent developments of pre-treatment technologies and hydrothermal liquefaction of microalgae for bio-crude oil production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 476-492.
- Collett, James R. & Billing, Justin M. & Meyer, Pimphan A. & Schmidt, Andrew J. & Remington, A. Brook & Hawley, Erik R. & Hofstad, Beth A. & Panisko, Ellen A. & Dai, Ziyu & Hart, Todd R. & Santosa, Da, 2019. "Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover," Applied Energy, Elsevier, vol. 233, pages 840-853.
- Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
- Yang, Jie & (Sophia) He, Quan & Yang, Linxi, 2019. "A review on hydrothermal co-liquefaction of biomass," Applied Energy, Elsevier, vol. 250(C), pages 926-945.
- Yu, Jie & Lin, Xiaoyu & Huang, Jingchen & Ye, Wangfang & Lan, Qian & Du, Shaorong & Liu, Zilin & Wu, Yijing & Zhao, Zeyuan & Xu, Xin & Yang, Guifang & Changotra, Rahil & Hu, Yulin & Wu, Yulong & Yan, , 2023. "Recent advances in the production processes of hydrothermal liquefaction biocrude and aid-in investigation techniques," Renewable Energy, Elsevier, vol. 218(C).
- Guanyu Zhang & Kejie Wang & Quan Liu & Lujia Han & Xuesong Zhang, 2022. "A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
- Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
- Jie Yang & Hao Chen & Haibo Niu & Josiah McNutt & Quan He, 2021. "A Comparative Study on Thermochemical Valorization Routes for Spent Coffee Grounds," Energies, MDPI, vol. 14(13), pages 1-10, June.
- Zhang, Bo & Chen, Jixiang & Kandasamy, Sabariswaran & He, Zhixia, 2020. "Hydrothermal liquefaction of fresh lemon-peel and Spirulina platensis blending -operation parameter and biocrude chemistry investigation," Energy, Elsevier, vol. 193(C).
- Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Kandasamy, Sabariswaran & Zhang, Bo & He, Zhixia & Chen, Haitao & Feng, Huan & Wang, Qian & Wang, Bin & Ashokkumar, Veeramuthu & Siva, Subramanian & Bhuvanendran, Narayanamoorthy & Krishnamoorthi, M., 2020. "Effect of low-temperature catalytic hydrothermal liquefaction of Spirulina platensis," Energy, Elsevier, vol. 190(C).
- Sangjan, Amornrat & Ngamsiri, Pornthip & Klomkliang, Nikom & Wu, Kevin C.-W. & Matsagar, Babasaheb M. & Ratchahat, Sakhon & Liu, Chen-Guang & Laosiripojana, Navadol & Sakdaronnarong, Chularat, 2020. "Effect of microwave-assisted wet torrefaction on liquefaction of biomass from palm oil and sugarcane wastes to bio-oil and carbon nanodots/nanoflakes by hydrothermolysis and solvothermolysis," Renewable Energy, Elsevier, vol. 154(C), pages 1204-1217.
- Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
- Masoumi, Shima & Boahene, Philip E. & Dalai, Ajay K., 2021. "Biocrude oil and hydrochar production and characterization obtained from hydrothermal liquefaction of microalgae in methanol-water system," Energy, Elsevier, vol. 217(C).
- Sedlar, D. Karasalihović & Vulin, D. & Krajačić, G. & Jukić, L., 2019. "Offshore gas production infrastructure reutilisation for blue energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 159-174.
- Gu, X. & Martinez-Fernandez, J.S. & Pang, N. & Fu, X. & Chen, S., 2020. "Recent development of hydrothermal liquefaction for algal biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
- Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
- Shahbeik, Hossein & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Guillemin, Gilles J. & Fallahi, Alireza & Hosseinzadeh-Bandbafha, Homa & Amiri, Hamid & Rehan, Mohammad & Raikwar, Deepak & Latine, , 2024. "Biomass to biofuels using hydrothermal liquefaction: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
More about this item
Keywords
Co-liquefaction; Microalgae; Lignin; Synergistic effect; Upgrading;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220306575. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.