IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v73y2017icp1211-1217.html
   My bibliography  Save this article

Carbon debt and payback time – Lost in the forest?

Author

Listed:
  • Bentsen, Niclas Scott

Abstract

In later years the potential contribution of forest bioenergy to mitigate climate change has been increasingly questioned due to temporal displacement between CO2 emissions when forest biomass is used for energy and subsequent sequestration of carbon in new biomass. Also disturbance of natural decay of dead biomass when used for energy affect the carbon dynamics of forest ecosystems. These perturbations of forest ecosystems are summarized under the concept of carbon debt and its payback time. Narrative reviews demonstrate that the payback time of apparently comparable forest bioenergy supply scenarios vary by up to 200 years allowing amble room for confusion and dispute about the climate benefits of forest bioenergy. This meta-analysis confirm that the outcome of carbon debt studies lie in the assumptions and find that methodological rather than ecosystem and management related assumptions determine the findings. The study implies that at the current development of carbon debt methodologies and their lack of consensus the concept in it-self is inadequate for informing and guiding policy development. At the management level the carbon debt concept may provide valuable information directing management principles in a more climate benign directions.

Suggested Citation

  • Bentsen, Niclas Scott, 2017. "Carbon debt and payback time – Lost in the forest?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1211-1217.
  • Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:1211-1217
    DOI: 10.1016/j.rser.2017.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117302034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gert-Jan Nabuurs & Marcus Lindner & Pieter J. Verkerk & Katja Gunia & Paola Deda & Roman Michalak & Giacomo Grassi, 2013. "First signs of carbon sink saturation in European forest biomass," Nature Climate Change, Nature, vol. 3(9), pages 792-796, September.
    2. Evelyne Thiffault & Ariane Béchard & David Paré & Darren Allen, 2015. "Recovery rate of harvest residues for bioenergy in boreal and temperate forests: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 429-451, September.
    3. Gustavsson, Leif & Haus, Sylvia & Ortiz, Carina A. & Sathre, Roger & Truong, Nguyen Le, 2015. "Climate effects of bioenergy from forest residues in comparison to fossil energy," Applied Energy, Elsevier, vol. 138(C), pages 36-50.
    4. Lamers, Patrick & Junginger, Martin & Hamelinck, Carlo & Faaij, André, 2012. "Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3176-3199.
    5. Richard York, 2012. "Do alternative energy sources displace fossil fuels?," Nature Climate Change, Nature, vol. 2(6), pages 441-443, June.
    6. Sebastiaan Luyssaert & E. -Detlef Schulze & Annett Börner & Alexander Knohl & Dominik Hessenmöller & Beverly E. Law & Philippe Ciais & John Grace, 2008. "Old-growth forests as global carbon sinks," Nature, Nature, vol. 455(7210), pages 213-215, September.
    7. Bjart Holtsmark, 2012. "Harvesting in boreal forests and the biofuel carbon debt," Climatic Change, Springer, vol. 112(2), pages 415-428, May.
    8. Markku Ollikainen, 2016. "Forest Management, Public Goods, and Optimal Policies," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 207-226, October.
    9. Holtsmark, Bjart, 2013. "Boreal forest management and its effect on atmospheric CO2," Ecological Modelling, Elsevier, vol. 248(C), pages 130-134.
    10. Marland, Gregg & Schlamadinger, Bernhard, 1995. "Biomass fuels and forest-management strategies: How do we calculate the greenhouse-gas emissions benefits?," Energy, Elsevier, vol. 20(11), pages 1131-1140.
    11. Olivia Cintas & Göran Berndes & Annette L. Cowie & Gustaf Egnell & Hampus Holmström & Göran I. Ågren, 2016. "The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 351-369, May.
    12. Withers, Mitch R. & Malina, Robert & Barrett, Steven R.H., 2015. "Carbon, climate, and economic breakeven times for biofuel from woody biomass from managed forests," Ecological Economics, Elsevier, vol. 112(C), pages 45-52.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tran, Thuc Han & Egermann, Markus, 2022. "Land-use implications of energy transition pathways towards decarbonisation – Comparing the footprints of Vietnam, New Zealand and Finland," Energy Policy, Elsevier, vol. 166(C).
    2. Schakel, Wouter & Hung, Christine Roxanne & Tokheim, Lars-Andre & Strømman, Anders Hammer & Worrell, Ernst & Ramírez, Andrea, 2018. "Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant," Applied Energy, Elsevier, vol. 210(C), pages 75-87.
    3. Giuntoli, J. & Searle, S. & Jonsson, R. & Agostini, A. & Robert, N. & Amaducci, S. & Marelli, L. & Camia, A., 2020. "Carbon accounting of bioenergy and forest management nexus. A reality-check of modeling assumptions and expectations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristian Madsen & Niclas Scott Bentsen, 2018. "Carbon Debt Payback Time for a Biomass Fired CHP Plant—A Case Study from Northern Europe," Energies, MDPI, vol. 11(4), pages 1-12, March.
    2. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    3. Lintunen, Jussi & Uusivuori, Jussi, 2014. "On The Economics of Forest Carbon: Renewable and Carbon Neutral But Not Emission Free," Climate Change and Sustainable Development 165755, Fondazione Eni Enrico Mattei (FEEM).
    4. Barrette, Julie & Thiffault, Evelyne & Achim, Alexis & Junginger, Martin & Pothier, David & De Grandpré, Louis, 2017. "A financial analysis of the potential of dead trees from the boreal forest of eastern Canada to serve as feedstock for wood pellet export," Applied Energy, Elsevier, vol. 198(C), pages 410-425.
    5. Geng, Aixin & Yang, Hongqiang & Chen, Jiaxin & Hong, Yinxing, 2017. "Review of carbon storage function of harvested wood products and the potential of wood substitution in greenhouse gas mitigation," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 192-200.
    6. Sutirtha Bandyopadhyay & Pranabes Dutta & Naveen Hari & Bipasha Maity, 2023. "Female Legislators and Forest Conservation in India," Working Papers 104, Ashoka University, Department of Economics.
    7. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    8. Albers, Ariane & Collet, Pierre & Lorne, Daphné & Benoist, Anthony & Hélias, Arnaud, 2019. "Coupling partial-equilibrium and dynamic biogenic carbon models to assess future transport scenarios in France," Applied Energy, Elsevier, vol. 239(C), pages 316-330.
    9. Giuntoli, J. & Searle, S. & Jonsson, R. & Agostini, A. & Robert, N. & Amaducci, S. & Marelli, L. & Camia, A., 2020. "Carbon accounting of bioenergy and forest management nexus. A reality-check of modeling assumptions and expectations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Lars Högbom & Dalia Abbas & Kęstutis Armolaitis & Endijs Baders & Martyn Futter & Aris Jansons & Kalev Jõgiste & Andis Lazdins & Diana Lukminė & Mika Mustonen & Knut Øistad & Anneli Poska & Pasi Rauti, 2021. "Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals," Sustainability, MDPI, vol. 13(10), pages 1-12, May.
    11. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2015. "Economics of co-firing coal and biomass: An application to Western Canada," Energy Economics, Elsevier, vol. 48(C), pages 7-17.
    12. Ajayi, Temitope & Awolayo, Adedapo & Gomes, Jorge S. & Parra, Humberto & Hu, Jialiang, 2019. "Large scale modeling and assessment of the feasibility of CO2 storage onshore Abu Dhabi," Energy, Elsevier, vol. 185(C), pages 653-670.
    13. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).
    14. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    15. Riikka Siljander & Tommi Ekholm, 2018. "Integrated scenario modelling of energy, greenhouse gas emissions and forestry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 783-802, June.
    16. repec:caa:jnljfs:v:preprint:id:118-2023-jfs is not listed on IDEAS
    17. Truong, Nguyen Le & Dodoo, Ambrose & Gustavsson, Leif, 2018. "Effects of energy efficiency measures in district-heated buildings on energy supply," Energy, Elsevier, vol. 142(C), pages 1114-1127.
    18. Kęstutis Venslauskas & Kęstutis Navickas & Marja Nappa & Petteri Kangas & Revilija Mozūraitytė & Rasa Šližytė & Vidmantas Župerka, 2021. "Energetic and Economic Evaluation of Zero-Waste Fish Co-Stream Processing," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    19. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    20. Julia Hansson & Roman Hackl, 2016. "The potential influence of sustainability criteria on the European Union pellets market—the example of Sweden," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(4), pages 413-429, July.
    21. Ryan P. Thombs, 2018. "Has the relationship between non-fossil fuel energy sources and CO2 emissions changed over time? A cross-national study, 2000–2013," Climatic Change, Springer, vol. 148(4), pages 481-490, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:1211-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.