IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v40y2019i5p143-168.html
   My bibliography  Save this article

Renewable Generation Capacity and Wholesale Electricity Price Variance

Author

Listed:
  • Erik Paul Johnson
  • Matthew E. Oliver

Abstract

The share of electric power generated from renewable energy sources such as wind and solar must increase dramatically in the coming decades if greenhouse gas emissions are to be reduced to sustainable levels. An under-researched implication of such a transition in competitive wholesale electricity markets is that greater wind and solar generation capacity directly affects wholesale price variability. In theory, two counter-vailing forces should be at work. First, greater wind and solar generation capacity should reduce short-run variance in the wholesale electricity price due to a stochastic merit-order effect. However, increasing the generation capacity of these technologies may increase price variance due to an intermittency effect. Using an instrumental variables identification strategy to control for endogeneity, we find evidence that greater combined wind and solar generation capacity is associated with an increase in the quarterly variance of wholesale electricity prices. That is, the intermittency effect dominates the stochastic merit-order effect.

Suggested Citation

  • Erik Paul Johnson & Matthew E. Oliver, 2019. "Renewable Generation Capacity and Wholesale Electricity Price Variance," The Energy Journal, , vol. 40(5), pages 143-168, September.
  • Handle: RePEc:sae:enejou:v:40:y:2019:i:5:p:143-168
    DOI: 10.5547/01956574.40.5.ejoh
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.40.5.ejoh
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.40.5.ejoh?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shrimali, Gireesh & Kniefel, Joshua, 2011. "Are government policies effective in promoting deployment of renewable electricity resources?," Energy Policy, Elsevier, vol. 39(9), pages 4726-4741, September.
    2. Lion Hirth, 2018. "What caused the drop in European electricity prices? A factor decomposition analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Worthington, Andrew & Kay-Spratley, Adam & Higgs, Helen, 2005. "Transmission of prices and price volatility in Australian electricity spot markets: a multivariate GARCH analysis," Energy Economics, Elsevier, vol. 27(2), pages 337-350, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Weber & Bin Lu, 2023. "An Open-Source Energy Arbitrage Model Involving Price Bands for Risk Hedging with Imperfect Price Signals," Energies, MDPI, vol. 17(1), pages 1-31, December.
    2. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    3. Böttger, Diana & Härtel, Philipp, 2022. "On wholesale electricity prices and market values in a carbon-neutral energy system," Energy Economics, Elsevier, vol. 106(C).
    4. Simshauser, Paul & Newbery, David, 2024. "Non-firm vs priority access: On the long run average and marginal costs of renewables in Australia," Energy Economics, Elsevier, vol. 136(C).
    5. Maniatis, Georgios I. & Milonas, Nikolaos T., 2022. "The impact of wind and solar power generation on the level and volatility of wholesale electricity prices in Greece," Energy Policy, Elsevier, vol. 170(C).
    6. Irfan, Mohd, 2021. "Integration between electricity and renewable energy certificate (REC) markets: Factors influencing the solar and non-solar REC in India," Renewable Energy, Elsevier, vol. 179(C), pages 65-74.
    7. Lee, Zachary E. & Zhang, K. Max, 2023. "Regulated peer-to-peer energy markets for harnessing decentralized demand flexibility," Applied Energy, Elsevier, vol. 336(C).
    8. Yijian Ge & Lin Liu & Xilong Yao & Mohammad Aman Honardost & Ujunwa Angela Nwigwe, 2022. "Are There Conflicts among Energy Security, Energy Equity and Environmental Sustainability in China’s Provinces?," Sustainability, MDPI, vol. 14(11), pages 1-17, June.
    9. Kolb, Sebastian & Dillig, Marius & Plankenbühler, Thomas & Karl, Jürgen, 2020. "The impact of renewables on electricity prices in Germany - An update for the years 2014–2018," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Nibedita, Barsha & Irfan, Mohd, 2022. "Analyzing the asymmetric impacts of renewables on wholesale electricity price: Empirical evidence from the Indian electricity market," Renewable Energy, Elsevier, vol. 194(C), pages 538-551.
    11. Diana Bottger & Philipp Hartel, 2021. "On Wholesale Electricity Prices and Market Values in a Carbon-Neutral Energy System," Papers 2105.01127, arXiv.org.
    12. Barsha Nibedita & Mohd Irfan, 2022. "Non-linear cointegration between wholesale electricity prices and electricity generation: an analysis of asymmetric effects," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(1), pages 285-303, February.
    13. Harker Steele, Amanda J. & Burnett, J. Wesley & Bergstrom, John C., 2021. "The impact of variable renewable energy resources on power system reliability," Energy Policy, Elsevier, vol. 151(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. -, 2023. "Foreign Direct Investment in Latin America and the Caribbean 2023," La Inversión Extranjera Directa en América Latina y el Caribe, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), number 48979 edited by Eclac.
    2. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    3. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    4. Jenner, Steffen & Groba, Felix & Indvik, Joe, 2013. "Assessing the strength and effectiveness of renewable electricity feed-in tariffs in European Union countries," Energy Policy, Elsevier, vol. 52(C), pages 385-401.
    5. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    6. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    7. Lynes, Melissa & Featherstone, Allen, 2015. "Economic Efficiency of Utility Plants Under Renewable Energy Policy," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205674, Agricultural and Applied Economics Association.
    8. Hörnlein, Lena, 2019. "The value of gas-fired power plants in markets with high shares of renewable energy," Energy Economics, Elsevier, vol. 81(C), pages 1078-1098.
    9. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    10. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    11. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Cerqueira, Pedro A., 2016. "It is windy in Denmark: Does market integration suffer?," Energy, Elsevier, vol. 115(P2), pages 1385-1399.
    12. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    13. Barnea, Gil & Hagemann, Christian & Wurster, Stefan, 2022. "Policy instruments matter: Support schemes for renewable energy capacity in worldwide comparison," Energy Policy, Elsevier, vol. 168(C).
    14. Sánchez-Braza, Antonio & Pablo-Romero, María del P., 2014. "Evaluation of property tax bonus to promote solar thermal systems in Andalusia (Spain)," Energy Policy, Elsevier, vol. 67(C), pages 832-843.
    15. Helen Higgs & Andrew C. Worthington, 2005. "Systematic Features of High-Frequency Volatility in Australian Electricity Markets: Intraday Patterns, Information Arrival and Calendar Effects," The Energy Journal, , vol. 26(4), pages 23-42, October.
    16. Ama Agyeiwaa Abrokwah, 2018. "Price and Volatility Spillovers in the Electricity Reliability Council of Texas Day-Ahead Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 322-330.
    17. John Francis Diaz & Peh Ying Qian & Genevieve Liao Tan, 2018. "Variance Persistence in the Greater China Region: A Multivariate GARCH Approach," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 23(2), pages 49-68, July-Dec.
    18. Bell, William Paul & Wild, Phillip & Foster, John & Hewson, Michael, 2017. "Revitalising the wind power induced merit order effect to reduce wholesale and retail electricity prices in Australia," Energy Economics, Elsevier, vol. 67(C), pages 224-241.
    19. Mills, Andrew & Wiser, Ryan & Millstein, Dev & Carvallo, Juan Pablo & Gorman, Will & Seel, Joachim & Jeong, Seongeun, 2021. "The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States," Applied Energy, Elsevier, vol. 283(C).
    20. Pablo-Romero, María del P. & Sánchez-Braza, Antonio & Salvador-Ponce, Jesús & Sánchez-Labrador, Natalia, 2017. "An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1366-1379.

    More about this item

    Keywords

    Wind power; Solar PV; Renewable energy generation capacity; Electricity price risk; Merit order; Intermittency;
    All these keywords.

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:40:y:2019:i:5:p:143-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.