IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp416-425.html
   My bibliography  Save this article

Should China support the development of biomass power generation?

Author

Listed:
  • He, Jiaxin
  • Liu, Ying
  • Lin, Boqiang

Abstract

Compared with wind and solar power, biomass power has grown relatively slowly in China. With abundant biomass resources, the development of biomass electric power in China has potential advantages. This paper analyzed the environmental impact of biomass power in the construction and operation stages in comparison with wind and solar power. The results showed that biomass power produced relatively less emissions in the system construction stage at around 1700 ton CO2-e/MW. In the operation stage, biomass power projects achieved an average of 131462 ton CO2-e per year, which is greater than wind and solar power of equal installed capacity. Biomass power plants could achieve net emission reductions in a shorter time (0.39 year) after operation. The life cycle GHG emissions of biomass power projects are between 42 and 85 g CO2-e/kWh. The evidence pointed out that biomass power is worth supporting in China, from the perspective of environmental performance. Local governments should promote the sustainable supply of biomass materials and the development of renewable energy industry should depend on local conditions.

Suggested Citation

  • He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:416-425
    DOI: 10.1016/j.energy.2018.08.136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218316724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Qinliang & Wang, Tingran & Zhang, Yimei & Miao, Xinyan & Zhu, Jun, 2017. "Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China," Energy, Elsevier, vol. 139(C), pages 1066-1079.
    2. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Hydroelectricity Generation Systems," Sustainability, MDPI, vol. 8(6), pages 1-14, June.
    3. Park, Hi-Chun & Heo, Eunnyeong, 2007. "The direct and indirect household energy requirements in the Republic of Korea from 1980 to 2000--An input-output analysis," Energy Policy, Elsevier, vol. 35(5), pages 2839-2851, May.
    4. Baral, Anil & Bakshi, Bhavik R., 2010. "Emergy analysis using US economic input–output models with applications to life cycles of gasoline and corn ethanol," Ecological Modelling, Elsevier, vol. 221(15), pages 1807-1818.
    5. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    6. Liu, Jicheng & Wang, Sijia & Wei, Qiushuang & Yan, Suli, 2014. "Present situation, problems and solutions of China׳s biomass power generation industry," Energy Policy, Elsevier, vol. 70(C), pages 144-151.
    7. Liu, Hong-Tao & Guo, Ju-E & Qian, Dong & Xi, You-Min, 2009. "Comprehensive evaluation of household indirect energy consumption and impacts of alternative energy policies in China by input-output analysis," Energy Policy, Elsevier, vol. 37(8), pages 3194-3204, August.
    8. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    9. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    10. Thakur, Amit & Canter, Christina E. & Kumar, Amit, 2014. "Life-cycle energy and emission analysis of power generation from forest biomass," Applied Energy, Elsevier, vol. 128(C), pages 246-253.
    11. Song, Qingbin & Wang, Zhishi & Li, Jinhui & Duan, Huabo & Yu, Danfeng & Liu, Gang, 2018. "Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2450-2459.
    12. Zhang, Qin & Zhou, Dequn & Fang, Xiaomeng, 2014. "Analysis on the policies of biomass power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 926-935.
    13. Richard York, 2012. "Do alternative energy sources displace fossil fuels?," Nature Climate Change, Nature, vol. 2(6), pages 441-443, June.
    14. Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
    15. Xingang, Zhao & Zhongfu, Tan & Pingkuo, Liu, 2013. "Development goal of 30GW for China’s biomass power generation: Will it be achieved?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 310-317.
    16. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2015. "Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix," Energy Policy, Elsevier, vol. 84(C), pages 155-165.
    17. Xingang, Zhao & Jieyu, Wang & Xiaomeng, Liu & Pingkuo, Liu, 2012. "China’s wind, biomass and solar power generation: What the situation tells us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6173-6182.
    18. Akhil Kadiyala & Raghava Kommalapati & Ziaul Huque, 2016. "Evaluation of the Life Cycle Greenhouse Gas Emissions from Different Biomass Feedstock Electricity Generation Systems," Sustainability, MDPI, vol. 8(11), pages 1-12, November.
    19. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    20. Lin, Boqiang & Liu, Xia, 2012. "Dilemma between economic development and energy conservation: Energy rebound effect in China," Energy, Elsevier, vol. 45(1), pages 867-873.
    21. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    22. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
    23. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    24. Zhao, Xin-gang & Li, Ang, 2016. "A multi-objective sustainable location model for biomass power plants: Case of China," Energy, Elsevier, vol. 112(C), pages 1184-1193.
    25. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    26. Yu-zhuo, Zhang & Xin-gang, Zhao & Ling-zhi, Ren & Ji, Liang & Ping-kuo, Liu, 2017. "The development of China's biomass power industry under feed-in tariff and renewable portfolio standard: A system dynamics analysis," Energy, Elsevier, vol. 139(C), pages 947-961.
    27. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    28. Abdelhady, Suzan & Borello, Domenico & Shaban, Ahmed, 2018. "Techno-economic assessment of biomass power plant fed with rice straw: Sensitivity and parametric analysis of the performance and the LCOE," Renewable Energy, Elsevier, vol. 115(C), pages 1026-1034.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    2. Fu, Yidan & Cai, Lei & Liu, Chunming & Wu, Mouliang & Guan, Yanwen, 2024. "Thermodynamic and economic performance comparison of biomass gasification oxy-fuel combustion power plant in different gasifying atmospheres using advanced exergy and exergoeconomic approach," Renewable Energy, Elsevier, vol. 226(C).
    3. Gao, Chengkang & Zhu, Sulong & An, Nan & Na, Hongming & You, Huan & Gao, Chengbo, 2021. "Comprehensive comparison of multiple renewable power generation methods: A combination analysis of life cycle assessment and ecological footprint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Yu, Shiwei & Zhou, Shuangshuang & Chen, Nan, 2024. "Multi-objective optimization of capacity and technology selection for provincial energy storage in China: The effects of peak-shifting and valley-filling," Applied Energy, Elsevier, vol. 355(C).
    5. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    6. Wang, Z.X. & Li, H.Y. & Zhang, X.F. & Wang, L.W. & Du, S. & Fang, C., 2020. "Performance analysis on a novel micro-scale combined cooling, heating and power (CCHP) system for domestic utilization driven by biomass energy," Renewable Energy, Elsevier, vol. 156(C), pages 1215-1232.
    7. Shuangshuang Zhou & Juan Yang & Shiwei Yu, 2022. "A Stochastic Multi-Objective Model for China’s Provincial Generation-Mix Planning: Considering Variable Renewable and Transmission Capacity," Energies, MDPI, vol. 15(8), pages 1-26, April.
    8. Zhao Xin-gang & Wang Wei & Hu Shuran & Liu Xuan, 2023. "Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    9. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Imran Ali Shah & Xiang Gou & Jinxiang Wu, 2019. "Simulation Study of an Oxy-Biomass-Based Boiler for Nearly Zero Emission Using Aspen Plus," Energies, MDPI, vol. 12(10), pages 1-21, May.
    11. Xiaocheng Zhu & Yanru Zhang & Zhenzhong Wang & Xunzhang Pan, 2022. "Comparison of China’s Biomass Combustion Power Generation with Different Installed Capacities," Energies, MDPI, vol. 15(4), pages 1-8, February.
    12. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    13. Kuznetsov, G.V. & Zenkov, A.V. & Tolokolnikov, A.A. & Cherednik, I.V. & Yankovsky, S.A., 2021. "Ignition of particles of finely dispersed fuel mixtures based on coal and fine wood," Energy, Elsevier, vol. 220(C).
    14. Zhu, Deao & Wang, Qinhui & Xie, Guilin & Ye, Zefu & Zhu, Zhujun & Ye, Chao, 2024. "Effect of air equivalence ratio on the characteristics of biomass partial gasification for syngas and biochar co-production in the fluidized bed," Renewable Energy, Elsevier, vol. 222(C).
    15. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.
    16. Yuan, Jiahang & Luo, Xinggang & Ding, Xianghai & Liu, Chunlai & Li, Cunbin, 2019. "Biomass power generation fuel procurement and storage modes evaluation: A case study in Jilin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 75-86.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    2. Juanjuan Wu & Jian Zhang & Weiming Yi & Hongzhen Cai & Yang Li & Zhanpeng Su, 2021. "A Game-Theoretic Analysis of Incentive Effects for Agribiomass Power Generation Supply Chain in China," Energies, MDPI, vol. 14(3), pages 1-18, January.
    3. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    4. He, Jiaxin & Lin, Boqiang, 2019. "Assessment of waste incineration power with considerations of subsidies and emissions in China," Energy Policy, Elsevier, vol. 126(C), pages 190-199.
    5. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    6. Montalvo-Navarrete, Juan M. & Lasso-Palacios, Ana P., 2024. "Energy access sustainability criteria definition for Colombian rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Solar energy embodied in international trade of goods and services: A multi-regional input–output approach," Energy, Elsevier, vol. 82(C), pages 578-588.
    8. Zhen, Wei & Qin, Quande & Zhong, Zhangqi & Li, Li & Wei, Yi-Ming, 2018. "Uncovering household indirect energy-saving responsibility from a sectoral perspective: An empirical analysis of Guangdong, China," Energy Economics, Elsevier, vol. 72(C), pages 451-461.
    9. Tan, Qinliang & Wang, Tingran & Zhang, Yimei & Miao, Xinyan & Zhu, Jun, 2017. "Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China," Energy, Elsevier, vol. 139(C), pages 1066-1079.
    10. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2016. "Novel Role of Rural Official Organization in the Biomass-Based Power Supply Chain in China: A Combined Game Theory and Agent-Based Simulation Approach," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    11. Mukaramah Harun, 2020. "Pursuing More Sustainable Energy Consumption by Analyzing Sectoral Direct and Indirect Energy Use in Malaysia: An Input-Output Analysis," Papers 2001.02508, arXiv.org.
    12. Zhao Xin-gang & Wang Wei & Hu Shuran & Liu Xuan, 2023. "Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    13. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2018. "A Co-Opetition Straw Supply Strategy Integrating Rural Official Organizations and Farmers’ Behavior in China," Energies, MDPI, vol. 11(10), pages 1-17, October.
    14. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    15. Wu, X.F. & Chen, G.Q., 2017. "Global primary energy use associated with production, consumption and international trade," Energy Policy, Elsevier, vol. 111(C), pages 85-94.
    16. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    17. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    18. Chen, G.Q. & Chen, Z.M., 2011. "Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2362-2376.
    19. Yuan, Jiahang & Luo, Xinggang & Ding, Xianghai & Liu, Chunlai & Li, Cunbin, 2019. "Biomass power generation fuel procurement and storage modes evaluation: A case study in Jilin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 75-86.
    20. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:416-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.