IDEAS home Printed from https://ideas.repec.org/r/jae/japmet/v25y2010i4p635-662.html
   My bibliography  Save this item

Path forecast evaluation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Matei Demetrescu & Mu-Chun Wang, 2014. "Incorporating Asymmetric Preferences into Fan Charts and Path Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(2), pages 287-297, April.
  2. Michael W. McCracken & Joseph T. McGillicuddy, 2019. "An empirical investigation of direct and iterated multistep conditional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 181-204, March.
  3. Daniel Grabowski & Anna Staszewska-Bystrova & Peter Winker, 2020. "Skewness-adjusted bootstrap confidence intervals and confidence bands for impulse response functions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(1), pages 5-32, March.
  4. Stefan Bruder, 2014. "Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions," ECON - Working Papers 181, Department of Economics - University of Zurich, revised Dec 2015.
  5. Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
  6. Andrew Martinez, 2017. "Testing for Differences in Path Forecast Accuracy: Forecast-Error Dynamics Matter," Working Papers (Old Series) 1717, Federal Reserve Bank of Cleveland.
  7. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2020. "Constructing joint confidence bands for impulse response functions of VAR models – A review," Econometrics and Statistics, Elsevier, vol. 13(C), pages 69-83.
  8. Hendry, David F. & Pretis, Felix, 2023. "Analysing differences between scenarios," International Journal of Forecasting, Elsevier, vol. 39(2), pages 754-771.
  9. Staszewska-Bystrova Anna, 2013. "Modified Scheffé’s Prediction Bands," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 233(5-6), pages 680-690, October.
  10. Jeanne Aslak Petersen & Ditte Heide-Jørgensen & Nina Detlefsen & Trine Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
  11. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
  12. Schüssler, Rainer & Trede, Mark, 2016. "Constructing minimum-width confidence bands," Economics Letters, Elsevier, vol. 145(C), pages 182-185.
  13. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.
  14. Christodoulakis, George, 2020. "Estimating the term structure of commodity market preferences," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1146-1163.
  15. Pinto, Rui & Bessa, Ricardo J. & Matos, Manuel A., 2017. "Multi-period flexibility forecast for low voltage prosumers," Energy, Elsevier, vol. 141(C), pages 2251-2263.
  16. Farooq Akram & Andrew Binning & Junior Maih, 2016. "Joint prediction bands for macroeconomic risk management," Working Paper 2016/7, Norges Bank.
  17. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941.
  18. Regmi, Hari & Kuethe, Todd H. & Foster, Kenneth A., 2022. "Evaluation of USDA's Agricultural Exports Projections," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322363, Agricultural and Applied Economics Association.
  19. Håvard Hungnes, 2020. "Equal predictability test for multi-step-ahead system forecasts invariant to linear transformations," Discussion Papers 931, Statistics Norway, Research Department.
  20. Helmut Lütkepohl & Anna Staszewska-Bystrova & Peter Winker, 2014. "Confidence Bands for Impulse Responses: Bonferroni versus Wald," Discussion Papers of DIW Berlin 1354, DIW Berlin, German Institute for Economic Research.
  21. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
  22. Farooq Akram & Andrew Binning & Junior Maih, 2016. "Joint prediction bands for macroeconomic risk management," Working Paper 2016/7, Norges Bank.
  23. Serafin, Tomasz & Marcjasz, Grzegorz & Weron, Rafał, 2022. "Trading on short-term path forecasts of intraday electricity prices," Energy Economics, Elsevier, vol. 112(C).
  24. Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.
  25. Charemza, Wojciech & Makarova, Svetlana & Rybiński, Krzysztof, 2022. "Economic uncertainty and natural language processing; The case of Russia," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 546-562.
  26. Lütkepohl, Helmut & Staszewska-Bystrova, Anna & Winker, Peter, 2015. "Comparison of methods for constructing joint confidence bands for impulse response functions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 782-798.
  27. Olga Isengildina‐Massa & Berna Karali & Todd H. Kuethe & Ani L. Katchova, 2021. "Joint Evaluation of the System of USDA's Farm Income Forecasts," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(3), pages 1140-1160, September.
  28. Cepni, Oguzhan & Clements, Michael P., 2024. "How local is the local inflation factor? Evidence from emerging European countries," International Journal of Forecasting, Elsevier, vol. 40(1), pages 160-183.
  29. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
  30. repec:hum:wpaper:sfb649dp2013-031 is not listed on IDEAS
  31. Dag Kolsrud, 2015. "A Time‐Simultaneous Prediction Box for a Multivariate Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 675-693, December.
  32. repec:hum:wpaper:sfb649dp2014-007 is not listed on IDEAS
  33. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
  34. Anna Staszewska‐Bystrova, 2011. "Bootstrap prediction bands for forecast paths from vector autoregressive models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(8), pages 721-735, December.
  35. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
  36. repec:ags:aaea22:335690 is not listed on IDEAS
  37. Jeanne Aslak Petersen & Ditte Mølgård Heide-Jørgensen & Nina Kildegaard Detlefsen & Trine Krogh Boomsma, 2016. "Short-term balancing of supply and demand in an electricity system: forecasting and scheduling," Annals of Operations Research, Springer, vol. 238(1), pages 449-473, March.
  38. Staszewska-Bystrova, Anna & Winker, Peter, 2013. "Constructing narrowest pathwise bootstrap prediction bands using threshold accepting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 221-233.
  39. Paolo Vidoni, 2017. "Improved multivariate prediction regions for Markov process models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 1-18, March.
  40. Jordà, Òscar & Knüppel, Malte & Marcellino, Massimiliano, 2013. "Empirical simultaneous prediction regions for path-forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 456-468.
  41. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.