IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v58y2010i2p458-469.html
   My bibliography  Save this item

Competitive Two-Agent Scheduling and Its Applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lee, Kangbok & Leung, Joseph Y-T. & Jia, Zhao-hong & Li, Wenhua & Pinedo, Michael L. & Lin, Bertrand M.T., 2014. "Fast approximation algorithms for bi-criteria scheduling with machine assignment costs," European Journal of Operational Research, Elsevier, vol. 238(1), pages 54-64.
  2. Byung-Cheon Choi & Myoung-Ju Park, 2020. "Scheduling two projects with controllable processing times in a single-machine environment," Journal of Scheduling, Springer, vol. 23(5), pages 619-628, October.
  3. Wan, Long & Ding, Zhihao & Li, Yunpeng & Chen, Qianqian & Tan, Zhiyi, 2015. "Scheduling to minimize the maximum total completion time per machine," European Journal of Operational Research, Elsevier, vol. 242(1), pages 45-50.
  4. Wenchang Luo & Lin Chen & Guochuan Zhang, 2012. "Approximation schemes for two-machine flow shop scheduling with two agents," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 229-239, October.
  5. Gao, Yuan & Yuan, Jinjiang & Ng, C.T. & Cheng, T.C.E., 2019. "A further study on two-agent parallel-batch scheduling with release dates and deteriorating jobs to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 273(1), pages 74-81.
  6. Yaodong Ni & Zhaojun Zhao, 2017. "Two-agent scheduling problem under fuzzy environment," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 739-748, March.
  7. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
  8. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
  9. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2023. "Approximation algorithms for bicriteria scheduling problems on identical parallel machines for makespan and total completion time," European Journal of Operational Research, Elsevier, vol. 305(2), pages 594-607.
  10. Ren-Xia Chen & Shi-Sheng Li, 2019. "Two-agent single-machine scheduling with cumulative deterioration," 4OR, Springer, vol. 17(2), pages 201-219, June.
  11. Manzhan Gu & Jinwei Gu & Xiwen Lu, 2018. "An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines," Journal of Scheduling, Springer, vol. 21(5), pages 483-492, October.
  12. Phosavanh, Johnson & Oron, Daniel, 2024. "Two-agent single-machine scheduling with a rate-modifying activity," European Journal of Operational Research, Elsevier, vol. 312(3), pages 866-876.
  13. Gaia Nicosia & Andrea Pacifici & Ulrich Pferschy, 2018. "Competitive multi-agent scheduling with an iterative selection rule," 4OR, Springer, vol. 16(1), pages 15-29, March.
  14. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
  15. Tifenn Rault & Faiza Sadi & Jean-Charles Billaut & Ameur Soukhal, 2024. "Scheduling two interfering job sets on identical parallel machines with makespan and total completion time minimization," Journal of Scheduling, Springer, vol. 27(5), pages 485-505, October.
  16. Du-Juan Wang & Yunqiang Yin & Shuenn-Ren Cheng & T.C.E. Cheng & Chin-Chia Wu, 2016. "Due date assignment and scheduling on a single machine with two competing agents," International Journal of Production Research, Taylor & Francis Journals, vol. 54(4), pages 1152-1169, February.
  17. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
  18. Wan, Long & Mei, Jiajie & Du, Jiangze, 2021. "Two-agent scheduling of unit processing time jobs to minimize total weighted completion time and total weighted number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 290(1), pages 26-35.
  19. Nong, Q.Q. & Cheng, T.C.E. & Ng, C.T., 2011. "Two-agent scheduling to minimize the total cost," European Journal of Operational Research, Elsevier, vol. 215(1), pages 39-44, November.
  20. Kejun Zhao & Xiwen Lu & Manzhan Gu, 2016. "A new approximation algorithm for multi-agent scheduling to minimize makespan on two machines," Journal of Scheduling, Springer, vol. 19(1), pages 21-31, February.
  21. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
  22. Donatas Elvikis & Vincent T’kindt, 2014. "Two-agent scheduling on uniform parallel machines with min-max criteria," Annals of Operations Research, Springer, vol. 213(1), pages 79-94, February.
  23. Koulamas, Christos, 2015. "A note on scheduling problems with competing agents and earliness minimization objectives," European Journal of Operational Research, Elsevier, vol. 245(3), pages 875-876.
  24. Gaia Nicosia & Andrea Pacifici & Ulrich Pferschy & Julia Resch & Giovanni Righini, 2021. "Optimally rescheduling jobs with a Last-In-First-Out buffer," Journal of Scheduling, Springer, vol. 24(6), pages 663-680, December.
  25. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
  26. Wan, Guohua & Vakati, Sudheer R. & Leung, Joseph Y.-T. & Pinedo, Michael, 2010. "Scheduling two agents with controllable processing times," European Journal of Operational Research, Elsevier, vol. 205(3), pages 528-539, September.
  27. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
  28. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
  29. Wan, Long & Yuan, Jinjiang & Wei, Lijun, 2016. "Pareto optimization scheduling with two competing agents to minimize the number of tardy jobs and the maximum cost," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 912-923.
  30. Hao Yan & Peihai Liu & Xiwen Lu, 2023. "Vehicle scheduling problems with two agents on a line," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-18, January.
  31. Geng, Zhichao & Yuan, Jinjiang, 2023. "Single-machine scheduling of multiple projects with controllable processing times," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1074-1090.
  32. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
  33. Claudia Marini & Gaia Nicosia & Andrea Pacifici & Ulrich Pferschy, 2013. "Strategies in competing subset selection," Annals of Operations Research, Springer, vol. 207(1), pages 181-200, August.
  34. Hermelin, Danny & Kubitza, Judith-Madeleine & Shabtay, Dvir & Talmon, Nimrod & Woeginger, Gerhard J., 2019. "Scheduling two agents on a single machine: A parameterized analysis of NP-hard problems," Omega, Elsevier, vol. 83(C), pages 275-286.
  35. Jun Pei & Jinling Wei & Baoyu Liao & Xinbao Liu & Panos M. Pardalos, 2020. "Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent," Annals of Operations Research, Springer, vol. 294(1), pages 191-223, November.
  36. Chen, Rubing & Geng, Zhichao & Lu, Lingfa & Yuan, Jinjiang & Zhang, Yuan, 2022. "Pareto-scheduling of two competing agents with their own equal processing times," European Journal of Operational Research, Elsevier, vol. 301(2), pages 414-431.
  37. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
  38. Wang, Jun-Qiang & Fan, Guo-Qiang & Zhang, Yingqian & Zhang, Cheng-Wu & Leung, Joseph Y.-T., 2017. "Two-agent scheduling on a single parallel-batching machine with equal processing time and non-identical job sizes," European Journal of Operational Research, Elsevier, vol. 258(2), pages 478-490.
  39. Shi-Sheng Li & Jin-Jiang Yuan, 2020. "Single-machine scheduling with multi-agents to minimize total weighted late work," Journal of Scheduling, Springer, vol. 23(4), pages 497-512, August.
  40. Rubing Chen & Jinjiang Yuan & Yuan Gao, 2019. "The complexity of CO-agent scheduling to minimize the total completion time and total number of tardy jobs," Journal of Scheduling, Springer, vol. 22(5), pages 581-593, October.
  41. Dan A. Iancu & Nikolaos Trichakis, 2014. "Pareto Efficiency in Robust Optimization," Management Science, INFORMS, vol. 60(1), pages 130-147, January.
  42. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
  43. Kejun Zhao & Xiwen Lu, 2016. "Two approximation algorithms for two-agent scheduling on parallel machines to minimize makespan," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 260-278, January.
  44. Cheng He & Joseph Y.-T. Leung, 2017. "Two-agent scheduling of time-dependent jobs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 362-377, August.
  45. Mor, Baruch & Mosheiov, Gur, 2011. "Single machine batch scheduling with two competing agents to minimize total flowtime," European Journal of Operational Research, Elsevier, vol. 215(3), pages 524-531, December.
  46. Xiaoqiang Cai & George L. Vairaktarakis, 2012. "Coordination of Outsourced Operations at a Third-Party Facility Subject to Booking, Overtime, and Tardiness Costs," Operations Research, INFORMS, vol. 60(6), pages 1436-1450, December.
  47. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
  48. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.
  49. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
  50. Ruyan He & Jinjiang Yuan & C. T. Ng & T. C. E. Cheng, 2021. "Two-agent preemptive Pareto-scheduling to minimize the number of tardy jobs and total late work," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 504-525, February.
  51. Choi, Byung-Cheon & Park, Myoung-Ju, 2017. "Two-agent parallel machine scheduling with a restricted number of overlapped reserved tasks," European Journal of Operational Research, Elsevier, vol. 260(2), pages 514-519.
  52. Shang-Chia Liu & Jiahui Duan & Win-Chin Lin & Wen-Hsiang Wu & Jan-Yee Kung & Hau Chen & Chin-Chia Wu, 2018. "A Branch-and-Bound Algorithm for Two-Agent Scheduling with Learning Effect and Late Work Criterion," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(05), pages 1-24, October.
  53. Tang, Lixin & Zhao, Xiaoli & Liu, Jiyin & Leung, Joseph Y.-T., 2017. "Competitive two-agent scheduling with deteriorating jobs on a single parallel-batching machine," European Journal of Operational Research, Elsevier, vol. 263(2), pages 401-411.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.