IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v21y2018i5d10.1007_s10951-017-0546-9.html
   My bibliography  Save this article

An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines

Author

Listed:
  • Manzhan Gu

    (School of Mathematics, Shanghai University of Finance and Economics)

  • Jinwei Gu

    (Shanghai University of Electric Power)

  • Xiwen Lu

    (East China University of Science and Technology)

Abstract

This paper considers a multi-agent scheduling problem, in which each agent has a set of non-preemptive jobs, and jobs of all agents are to be processed on m identical parallel machines. The objective is to find a schedule to minimize the makespan of each agent. For an agent, the definition of $$\alpha $$ α point is introduced, based on which an approximation algorithm is proposed for the problem. In the obtained schedule, the agent with the ith smallest $$\alpha $$ α point value is the ith completed agent, and the agent’s completion time is at most $$i+ \left( \frac{1}{3}-\frac{1}{3m}\right) $$ i + 1 3 - 1 3 m times its minimum makespan. Finally, we show the performance analysis is tight.

Suggested Citation

  • Manzhan Gu & Jinwei Gu & Xiwen Lu, 2018. "An algorithm for multi-agent scheduling to minimize the makespan on m parallel machines," Journal of Scheduling, Springer, vol. 21(5), pages 483-492, October.
  • Handle: RePEc:spr:jsched:v:21:y:2018:i:5:d:10.1007_s10951-017-0546-9
    DOI: 10.1007/s10951-017-0546-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-017-0546-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-017-0546-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allesandro Agnetis & Pitu B. Mirchandani & Dario Pacciarelli & Andrea Pacifici, 2004. "Scheduling Problems with Two Competing Agents," Operations Research, INFORMS, vol. 52(2), pages 229-242, April.
    2. Kejun Zhao & Xiwen Lu & Manzhan Gu, 2016. "A new approximation algorithm for multi-agent scheduling to minimize makespan on two machines," Journal of Scheduling, Springer, vol. 19(1), pages 21-31, February.
    3. Joseph Y.-T. Leung & Michael Pinedo & Guohua Wan, 2010. "Competitive Two-Agent Scheduling and Its Applications," Operations Research, INFORMS, vol. 58(2), pages 458-469, April.
    4. Alessandro Agnetis & Dario Pacciarelli & Andrea Pacifici, 2007. "Multi-agent single machine scheduling," Annals of Operations Research, Springer, vol. 150(1), pages 3-15, March.
    5. Kejun Zhao & Xiwen Lu, 2016. "Two approximation algorithms for two-agent scheduling on parallel machines to minimize makespan," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 260-278, January.
    6. Cheng, T.C.E. & Ng, C.T. & Yuan, J.J., 2008. "Multi-agent scheduling on a single machine with max-form criteria," European Journal of Operational Research, Elsevier, vol. 188(2), pages 603-609, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingli Li & Jiahai Wang & Zhengwei Liu, 2022. "A simple two-agent system for multi-objective flexible job-shop scheduling," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 42-64, January.
    2. Jun Pei & Jinling Wei & Baoyu Liao & Xinbao Liu & Panos M. Pardalos, 2020. "Two-agent scheduling on bounded parallel-batching machines with an aging effect of job-position-dependent," Annals of Operations Research, Springer, vol. 294(1), pages 191-223, November.
    3. Li-Han Zhang & Dan-Yang Lv & Ji-Bo Wang, 2023. "Two-Agent Slack Due-Date Assignment Scheduling with Resource Allocations and Deteriorating Jobs," Mathematics, MDPI, vol. 11(12), pages 1-12, June.
    4. Jesús Isaac Vázquez-Serrano & Leopoldo Eduardo Cárdenas-Barrón & Rodrigo E. Peimbert-García, 2021. "Agent Scheduling in Unrelated Parallel Machines with Sequence- and Agent–Machine–Dependent Setup Time Problem," Mathematics, MDPI, vol. 9(22), pages 1-34, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang Xingong & Wang Yong, 2017. "Two-agent scheduling problems on a single-machine to minimize the total weighted late work," Journal of Combinatorial Optimization, Springer, vol. 33(3), pages 945-955, April.
    2. Nong, Q.Q. & Cheng, T.C.E. & Ng, C.T., 2011. "Two-agent scheduling to minimize the total cost," European Journal of Operational Research, Elsevier, vol. 215(1), pages 39-44, November.
    3. Ren-Xia Chen & Shi-Sheng Li, 2019. "Two-agent single-machine scheduling with cumulative deterioration," 4OR, Springer, vol. 17(2), pages 201-219, June.
    4. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    5. Perez-Gonzalez, Paz & Framinan, Jose M., 2014. "A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 1-16.
    6. Shi-Sheng Li & Ren-Xia Chen & Qi Feng, 2016. "Scheduling two job families on a single machine with two competitive agents," Journal of Combinatorial Optimization, Springer, vol. 32(3), pages 784-799, October.
    7. Wenchang Luo & Lin Chen & Guochuan Zhang, 2012. "Approximation schemes for two-machine flow shop scheduling with two agents," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 229-239, October.
    8. Fan, B.Q. & Cheng, T.C.E., 2016. "Two-agent scheduling in a flowshop," European Journal of Operational Research, Elsevier, vol. 252(2), pages 376-384.
    9. Oron, Daniel, 2021. "Two-agent scheduling problems under rejection budget constraints," Omega, Elsevier, vol. 102(C).
    10. Cheng He & Joseph Y.-T. Leung, 2017. "Two-agent scheduling of time-dependent jobs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 362-377, August.
    11. Baruch Mor & Gur Mosheiov, 2017. "A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance," Journal of Combinatorial Optimization, Springer, vol. 33(4), pages 1454-1468, May.
    12. Shi-Sheng Li & Ren-Xia Chen, 2023. "Competitive two-agent scheduling with release dates and preemption on a single machine," Journal of Scheduling, Springer, vol. 26(3), pages 227-249, June.
    13. Byung-Gyoo Kim & Byung-Cheon Choi & Myoung-Ju Park, 2017. "Two-Machine and Two-Agent Flow Shop with Special Processing Times Structures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(04), pages 1-17, August.
    14. Yunqiang Yin & T. C. E. Cheng & Du-Juan Wang & Chin-Chia Wu, 2017. "Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs," Journal of Scheduling, Springer, vol. 20(4), pages 313-335, August.
    15. Zhang, Xingong, 2021. "Two competitive agents to minimize the weighted total late work and the total completion time," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    16. Omri Dover & Dvir Shabtay, 2016. "Single machine scheduling with two competing agents, arbitrary release dates and unit processing times," Annals of Operations Research, Springer, vol. 238(1), pages 145-178, March.
    17. Cheng He & Chunqi Xu & Hao Lin, 2020. "Serial-batching scheduling with two agents to minimize makespan and maximum cost," Journal of Scheduling, Springer, vol. 23(5), pages 609-617, October.
    18. Byung-Cheon Choi & Myoung-Ju Park, 2016. "An Ordered Flow Shop with Two Agents," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-24, October.
    19. Shesh Narayan Sahu & Yuvraj Gajpal & Swapan Debbarma, 2018. "Two-agent-based single-machine scheduling with switchover time to minimize total weighted completion time and makespan objectives," Annals of Operations Research, Springer, vol. 269(1), pages 623-640, October.
    20. Ruyan He & Jinjiang Yuan, 2020. "Two-Agent Preemptive Pareto-Scheduling to Minimize Late Work and Other Criteria," Mathematics, MDPI, vol. 8(9), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:21:y:2018:i:5:d:10.1007_s10951-017-0546-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.