IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v52y2004i3p422-439.html
   My bibliography  Save this item

An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
  2. Moon, Ilkyeong & Feng, Xuehao, 2017. "Supply chain coordination with a single supplier and multiple retailers considering customer arrival times and route selection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 78-97.
  3. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
  4. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
  5. Negin Alisoltani & Mostafa Ameli & Mahdi Zargayouna & Ludovic Leclercq, 2022. "Space-time clustering-based method to optimize shareability in real-time ride-sharing," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-25, January.
  6. Enzi, Miriam & Parragh, Sophie N. & Pisinger, David & Prandtstetter, Matthias, 2021. "Modeling and solving the multimodal car- and ride-sharing problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 290-303.
  7. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
  8. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
  9. Masoud, Neda & Jayakrishnan, R., 2017. "A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ridesharing system," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 218-236.
  10. Bian, Zheyong & Liu, Xiang & Bai, Yun, 2020. "Mechanism design for on-demand first-mile ridesharing," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 77-117.
  11. Agatz, N.A.H. & Erera, A. & Savelsbergh, M.W.P. & Wang, X., 2010. "Sustainable Passenger Transportation: Dynamic Ride-Sharing," ERIM Report Series Research in Management ERS-2010-010-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  12. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
  13. Naoum-Sawaya, Joe & Cogill, Randy & Ghaddar, Bissan & Sajja, Shravan & Shorten, Robert & Taheri, Nicole & Tommasi, Pierpaolo & Verago, Rudi & Wirth, Fabian, 2015. "Stochastic optimization approach for the car placement problem in ridesharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 173-184.
  14. Lucas Agussurja & Shih-Fen Cheng & Hoong Chuin Lau, 2019. "A State Aggregation Approach for Stochastic Multiperiod Last-Mile Ride-Sharing Problems," Service Science, INFORMS, vol. 53(1), pages 148-166, February.
  15. Tu, Meiting & Li, Ye & Li, Wenxiang & Tu, Minchao & Orfila, Olivier & Gruyer, Dominique, 2019. "Improving ridesplitting services using optimization procedures on a shareability network: A case study of Chengdu," Technological Forecasting and Social Change, Elsevier, vol. 149(C).
  16. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
  17. Dessouky, Maged & Mahtab, Zuhayer, 2022. "The Ridesharing Routing Problem with Flexible Pickup and Drop-off Points," Institute of Transportation Studies, Working Paper Series qt3107w642, Institute of Transportation Studies, UC Davis.
  18. Boysen, Nils & Briskorn, Dirk & Schwerdfeger, Stefan & Stephan, Konrad, 2021. "Optimizing carpool formation along high-occupancy vehicle lanes," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1097-1112.
  19. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
  20. Wang, X. & Agatz, N.A.H. & Erera, A., 2015. "Stable Matching for Dynamic Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  21. Masoud, Neda & Lloret-Batlle, Roger & Jayakrishnan, R., 2017. "Using bilateral trading to increase ridership and user permanence in ridesharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 102(C), pages 60-77.
  22. Zhang, Ruolin & Masoud, Neda, 2021. "A distributed algorithm for operating large-scale ridesourcing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
  23. Can Huang & Defu Zhang & Yain-Whar Si & Stephen C. H. Leung, 2016. "Tabu search for the real-world carpooling problem," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 492-512, August.
  24. Guo, Yuhan & Zhang, Yu & Boulaksil, Youssef & Qian, Yaguan & Allaoui, Hamid, 2023. "Modelling and analysis of online ride-sharing platforms – A sustainability perspective," European Journal of Operational Research, Elsevier, vol. 304(2), pages 577-595.
  25. Sepide Lotfi & Khaled Abdelghany, 2022. "Ride matching and vehicle routing for on-demand mobility services," Journal of Heuristics, Springer, vol. 28(3), pages 235-258, June.
  26. Christian Fikar & Angel A. Juan & Enoc Martinez & Patrick Hirsch, 2016. "A discrete-event driven metaheuristic for dynamic home service routing with synchronised trip sharing," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 10(3), pages 323-340.
  27. Antonella Petrillo & Pasquale Carotenuto & Ilaria Baffo & Fabio De Felice, 2018. "A web-based multiple criteria decision support system for evaluation analysis of carpooling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2321-2341, October.
  28. Yi, Xu & Lian, Feng & Yang, Zhongzhen, 2022. "Research on commuters’ carpooling behavior in the mobile internet context," Transport Policy, Elsevier, vol. 126(C), pages 14-25.
  29. Li, Zhaojin & Liu, Ya & Yang, Zhen, 2021. "An effective kernel search and dynamic programming hybrid heuristic for a multimodal transportation planning problem with order consolidation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
  30. Ning Ma & Ziqiang Zeng & Yinhai Wang & Jiuping Xu, 2021. "Balanced strategy based on environment and user benefit-oriented carpooling service mode for commuting trips," Transportation, Springer, vol. 48(3), pages 1241-1266, June.
  31. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
  32. Fu-Shiung Hsieh, 2021. "A Comparison of Three Ridesharing Cost Savings Allocation Schemes Based on the Number of Acceptable Shared Rides," Energies, MDPI, vol. 14(21), pages 1-30, October.
  33. Ma, Rui & Zhang, H.M., 2017. "The morning commute problem with ridesharing and dynamic parking charges," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 345-374.
  34. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
  35. Hosni, Hadi & Naoum-Sawaya, Joe & Artail, Hassan, 2014. "The shared-taxi problem: Formulation and solution methods," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 303-318.
  36. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
  37. Shangyao Yan & Chun-Ying Chen, 2011. "An optimization model and a solution algorithm for the many-to-many car pooling problem," Annals of Operations Research, Springer, vol. 191(1), pages 37-71, November.
  38. Arslan, A.M. & Agatz, N.A.H. & Kroon, L.G. & Zuidwijk, R.A., 2016. "Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-hoc Drivers," ERIM Report Series Research in Management ERS-2016-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  39. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
  40. Seyed Omid Hasanpour Jesri & Mohsen Akbarpour Shirazi, 2022. "Bi Objective Peer-to-Peer Ridesharing Model for Balancing Passengers Time and Costs," Sustainability, MDPI, vol. 14(12), pages 1-24, June.
  41. Yijie Han & Chen Sun, 2021. "An O(nlogn/logw) Time Algorithm for Ridesharing," Computer and Information Science, Canadian Center of Science and Education, vol. 14(1), pages 1-8, February.
  42. Guo, Yuhan & Zhang, Yu & Boulaksil, Youssef, 2021. "Real-time ride-sharing framework with dynamic timeframe and anticipation-based migration," European Journal of Operational Research, Elsevier, vol. 288(3), pages 810-828.
  43. Markus Friedrich & Maximilian Hartl & Christoph Magg, 2018. "A modeling approach for matching ridesharing trips within macroscopic travel demand models," Transportation, Springer, vol. 45(6), pages 1639-1653, November.
  44. Schulz, Arne & Pfeiffer, Christian, 2024. "A Branch-and-Cut algorithm for the dial-a-ride problem with incompatible customer types," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
  45. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
  46. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
  47. Guo, Xiaotong & Caros, Nicholas S. & Zhao, Jinhua, 2021. "Robust matching-integrated vehicle rebalancing in ride-hailing system with uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 161-189.
  48. Bian, Zheyong & Liu, Xiang, 2019. "Mechanism design for first-mile ridesharing based on personalized requirements part I: Theoretical analysis in generalized scenarios," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 147-171.
  49. Hai Wang & Amedeo Odoni, 2016. "Approximating the Performance of a “Last Mile” Transportation System," Transportation Science, INFORMS, vol. 50(2), pages 659-675, May.
  50. Hou, Liwen & Li, Dong & Zhang, Dali, 2018. "Ride-matching and routing optimisation: Models and a large neighbourhood search heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 143-162.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.